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Charge and Spin Effects in Semiconductor Nanostructures 

ABSTRACT 

 Semiconductor nanostructures are tunable systems and can serve as probes of 

strongly correlated electron behavior. These nanostructured devices are also promising 

candidates for building blocks of efficient, highly parallel nanoelectronic circuits and 

spin-qubit circuits. In this thesis, we present low-temperature transport measurements of 

semiconductor quantum dots and nanowires. We explore charge and spin effects in the 

context of the Coulomb blockade and the collective many-body phenomena of the Kondo 

effect and superconductivity. 

 In the first part of this thesis, we present experiments on quantum dots defined in 

GaAs/AlGaAs heterostructures containing two-dimensional electron gases. We 

investigate a triple quantum dot artificial molecule, where the three dots are arranged in a 

ring structure. When asymmetric coupling is introduced in the system, we show that the 

three coupled quantum dots in the Coulomb blockade regime act as an electron rectifier. 

This triple dot system can be used as a single-electron charge rectifier in single-electron 

circuits. A symmetric triple dot artificial molecule is also investigated. We supplement 

our experimental investigations with numerical calculations to determine the singlet-

triplet splitting for a two electron triple quantum dot. 

 In a separate experiment, we investigate a quantum dot containing just one or two 

electrons in the Kondo regime. We observe several sharp peaks in the differential 

conductance, occurring at both zero and finite source-drain bias, for the one and two 
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electron quantum dot. At zero source-drain bias, the temperature and magnetic field 

dependence of the conductance is consistent with a standard Kondo resonance. The peaks 

at finite-bias are related to a Kondo effect through excited states of the quantum dot. 

Measurements in an applied magnetic field were also performed to probe these additional 

Kondo resonances. 

 In the second part of this thesis, we present transport measurements of one-

dimensional hole gases formed in Ge/Si core/shell heterostructure nanowires. When 

connected to superconducting aluminum electrodes, a dissipationless supercurrent flows 

through the semiconductor nanowire. By using a local top gate, which modulates the 

carrier density of the nanowire and the number of one-dimensional subbands populated, 

the critical current can be tuned. Resonant multiple Andreev reflections in the 

superconductor-nanowire-superconductor system is also observed. Finally, we investigate 

the interplay between one-dimensional quantum confinement and superconductivity.
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I 

INTRODUCTION 

 

1.1 Overview 

 The combination of physics, material science, and device engineering has proved 

to be very valuable. The ability to artificially create new materials allows and inspires 

new device concepts. For example, band structure engineering [1] of semiconductor 

heterostructures has allowed for many new electronic and optical devices. The 

development of compound semiconductor technologies, and the ability to scale down the 

size of field-effect transistors and other electronic components, has led to an 

extraordinary success for semiconductor electronics. However, new device concepts and 

computing architectures are now needed to continue such a trend. With advances in 

nanoscale science, the ability to create small, artificial structures is now possible, as is the 

precise control over the position and movement of electrons and atoms. This level of 

control allows for developments of smaller electronic components that have the potential 

to replace the conventional field-effect transistor and also offer the possibility for the 

eventual realization of a quantum computer. 

 Aside from improvements to technology, our ability to create structures at the 

nanoscale has also allowed for the study of low-dimensional electron systems and many-

body physics. The most compelling illustrations of this are the experimental discoveries 

of the integer [2] and fractional quantum Hall effect [3]. The fractional quantum Hall 

effect, where electrons condense into liquid-like states, is a correlation-dominated two-
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dimensional electron system in the extreme quantum limit [4]. These low-dimensional 

electron systems are some of the most fascinating systems in condensed matter physics. 

 In order to investigate lower-dimensional electron systems, the dimensionality 

needs to be reduced by confining the electrons in certain directions. In this thesis, we 

investigate electron transport in semiconductor quantum dots and nanowires, where the 

techniques of band structure engineering are employed to create a two-dimensional 

electron gas and a one-dimensional hole gas. These nanostructures are tunable systems, 

ideal for studying the electrical properties of confined electrons. Furthermore, these 

nanostructures can be used as the building blocks in future nanoelectronic circuits and 

quantum computers. An example of a coupled quantum dot system studied in this thesis 

is shown in Figure 1.1 (a). 

 Zero-dimensional quantum dots and one-dimensional nanowires have also 

revealed interesting and rich physics. In this thesis, we have the opportunity to investigate 

strongly correlated electron systems. Using a quantum dot containing just one or two 

electrons, we study the Kondo effect and investigate the effect of a multilevel quantum 

dot energy spectrum on the Kondo resonances. Using semiconductor nanowires contacted 

by superconducting electrodes, we study proximity-induced superconductivity and 

observe dissipationless supercurrents flowing through the nanowires. We also investigate 

the interplay between one-dimensional quantum confinement and superconductivity. A 

schematic of the Ge/Si nanowire studied in this thesis is shown in Figure 1.1 (b). The 

nanowires are one-dimensional and can be operated in the regime where only the first 

few one-dimensional subbands are populated. 
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Figure 1.1 (a) Scanning electron micrograph of a triple quantum dot fabricated
in a GaAs/AlGaAs heterostructure containing a two-dimensional electron gas.
(b) Schematic of a one-dimensional Ge/Si core/shell heterostructure nanowire
which can be tuned down to contain just the first few 1D modes.
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1.2 Outline 

 This thesis focuses on the electrical properties of two low-dimensional systems: 

semiconductor quantum dots and semiconductor nanowires. The quantum dots are 

fabricated in a GaAs/AlGaAs heterostructure containing a two-dimensional electron gas 

and the nanowires are Ge/Si core/shell heterostructures containing a one-dimensional 

hole gas. A brief overview of the structure of the thesis is as follows: 

  In the first part of this thesis, we discuss our work on semiconductor quantum 

dots. In Chapter 2, useful background material is presented, covering the properties of 

the two-dimensional electron gas and quantum dots. Chapter 3 describes the fabrication 

techniques used to form the quantum dots and the experimental setups for the low-

temperature electrical measurements. A discussion of Shubnikov-de Haas oscillations and 

the measurements used to determine the sheet carrier density and mobility is also 

provided. Chapter 4 covers our studies of triple quantum dots, artificial molecules 

consisting of three coupled quantum dots. The three dots are arranged in a ring structure, 

with each dot coupled to the other two dots. We begin with a derivation of the triple dot 

stability diagram, followed by experimental results on a triple dot charge rectifier. We 

also present numerical results, using density functional theory and exact diagonalization, 

of the exchange interaction in a two-electron triple quantum dot. Chapter 5 describes our 

experiments regarding a few-electron quantum dot. The quantum dot can be tuned down 

to contain just one or two electrons while maintaining strong coupling to the leads, ideal 

for the study of the Kondo effect. We measure several sharp peaks in the differential 

conductance for the one and two electron quantum dot that we attribute to a Kondo effect 

through excited states of the quantum dot. 
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 The second part of this thesis describes our experimental study of Ge/Si 

nanowires. Semiconductor nanowires are finding increased importance in nanoelectronics 

due to their controlled growth and reduced dimensions. Chapter 6 describes our unique 

one-dimensional nanowires. The nanowires have a core/shell (radial heterostructure) 

geometry. The 15 nm diameter core is made of germanium and the 2 nm thick shell is 

made of silicon. Due to a valence band offset, holes are confined to the core, and a one-

dimensional hole gas is formed. Nonlinear conductance measurements of the nanowires, 

demonstrating one-dimensional quantum confinement, are also presented in this chapter. 

The chapter concludes with a review covering useful background information on 

proximity-induced superconductivity. In Chapter 7, we present a thorough experimental 

investigation of proximity-induced superconductivity in Ge/Si nanowires. The first 

section of this chapter covers experimental techniques and low-noise electronic filtering. 

The second and third sections describe low-temperature transport measurements of the 

nanowires in the superconducting state. We measure tunable dissipationless supercurrents 

and resonant multiple Andreev reflections in the superconductor-nanowire hybrid 

structure. The final section describes the interplay of one-dimensional modes and 

superconductivity. 
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II 

GaAs/AlGaAs HETEROSTRUCTURES AND SPLIT-GATE DEVICES 

 

2.1 Overview 

 Two-dimensional electron systems realized in semiconductor heterostructures 

provide an ideal material to study, in a controlled way, coherent quantum mechanical 

effects in electron transport. In Section 2.2, we introduce the high mobility GaAs/AlGaAs 

two-dimensional electron gas, and give a short review of its main physical and electrical 

properties. The low carrier density in this system, compared to metallic systems, results 

in a relatively large Fermi wavelength. Therefore, using standard semiconductor 

processing techniques, fabrication of split-gate devices with features comparable to the 

Fermi wavelength is possible and allows for quantum effects in transport to be observed. 

Section 2.3 describes the quantum point contact and the phenomenon of quantized 

conductance. In Section 2.4, we describe the transport properties of a quantum dot and 

review single-electron tunneling and the Coulomb blockade. Finally, in Section 2.5, we 

describe the double quantum dot system and present data on a few-electron double dot 

device that we have fabricated. Information regarding processing, fabrication, and 

measurement techniques is described in Chapter 3. 

 

2.2 Two-Dimensional Electron Gas 

 By using a modulation-doped [5] GaAs/AlxGa1-xAs heterostructure, grown by 

molecular beam epitaxy [6,7], we can confine the motion of electrons to the plane 

perpendicular to the growth direction, at the interface between the GaAs and AlxGa1-xAs 
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layers. The motivation behind using a heterostructure is the concept of band structure 

engineering. Using two different materials with different band gaps Eg, in this case GaAs 

(Eg = 1.41 eV) and Al0.3Ga0.7As (Eg = 1.75 eV), we can form a straddling alignment of 

the conduction and valence bands at the heterojunction, as shown in Figure 2.1 (a). Due 

to the conduction band offset of approximately 300 meV, carriers prefer the GaAs layer. 

Doping the heterostructure with Si provides conduction electrons which migrate to the 

GaAs layer. This process leaves behind positively charged Si ions that create an electric 

field that bends the conduction band. The electrons are then confined to a narrow 

triangular well of approximately 10 nm that is formed at the heterojunction. 

 In general, for our heterostructures, the doping efficiency is such that roughly 

one-half of the Si donors are thermally activated. Furthermore, more electrons from the 

ionized Si donors migrate to the surface rather than to the GaAs layer to satisfy the 

surface states. 

 Electrons at the heterojunction are free to move in the x-y plane (parallel to the 

growth direction) but motion in the z-direction is quantized inside the narrow well. 

Assuming a triangular potential, as shown in Figure 2.1 (b), we can solve for the energy 

levels in the quantum well [8,9]. The well is modeled by an electric field F = 4πns/ε due 

to the ionized Si donors, where ns is the sheet carrier density and ε = 13 is the dielectric 

constant of GaAs, and an infinite barrier at the heterojunction. Solutions of the 

Schrödinger equation take the form of 

 ( , ) ( )ik r
nr z Ae zψ ϕ⋅=

G GG  (2.1) 
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Figure 2.1 (a) Conduction band energy versus growth direction of a GaAs/Al0.3Ga0.7As 
heterostructure. A conduction band offset at the heterojunction is present. Silicon donors 
supply conduction electrons which migrate toward the GaAs layer leaving behind 
positively charged ions. An electric field is generated which bends the conduction band 
edge and confines the electrons to a narrow region approximately 10 nm wide. 
(b) Triangular well approximation of the GaAs-Al0.3Ga0.7As interface, showing the first 
three solutions (Airy functions) of the Schrödinger equation. At low temperature and low 
dopant concentration, only the lowest energy level is occupied. 



corresponding to free electron motion in the x-y plane and quantized eigenstates in the z-

direction. ( )n zϕ  are the well known Airy functions depicted in Figure 2.1 (b). The 

eigenenergies are given by 

 
1/3 2 /32

*

3 3
2 2 4n

FE
m

π⎛ ⎞ ⎛ n ⎞⎡ ⎤= ⎜ ⎟ ⎜ + ⎟⎢ ⎥⎣ ⎦⎝ ⎠⎝ ⎠

=  (2.2) 

The first excited state is approximately 150 meV above the ground state. At dilution 

refrigerator temperature with 100 Bk T eVμ≤  and low carrier sheet density (low dopant 

concentration), electrons occupy only the lowest energy level with a negligible 

probability for excitation to the higher states. Electrons are therefore confined in the z-

direction, but remain free in the x-y plane, resulting in a two-dimensional electron gas 

(2DEG). 

 At zero magnetic field, the free particle energy spectrum is 

 (
2

2 2
*( , )

2 )x y xE k k k k
m

= +
=

y  (2.3) 

where m* = 0.067me is the electron effective mass in GaAs. The number of electron states 

per unit area is 

 
*

2( ) m En E
π

=
=

 (2.4) 

which yields a density of states 

 
*

2

( )( ) dn E mE
dE

ρ
π

= =
=

 (2.5) 

that is a constant. As a consequence, the Fermi energy is simply EF = ns/ρ. The Fermi 

wavenumber kF and Fermi wavelength λF are 
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*

2

2 2

2 2

F
F s

F
F s

m Ek n

k n

π

π πλ

= =

= =

=  (2.6) 

λF is typically 40 nm in this system. Another relevant length scale for the two-

dimensional electron gas is the mean free path 

 Fl v τ=  (2.7) 

where *
F Fv k m= =  is the Fermi velocity and *m eτ μ=  is the elastic scattering time. 

The electron mobility μ is typically as high as 104-106 cm2/Vs resulting in a mean free 

path, at low temperature, on the order of 1-10 μm. Ref. [10] provides a thorough review 

of the electronic properties of two-dimensional systems.  

 

2.3 Quantum Point Contacts 

 The two-dimensional electron gas can be further confined into a one-dimensional 

system by using the standard split-gate technique [11,12]. Electron beam lithography can 

be used to pattern metallic gates on the surface of the heterostructure. When a negative 

voltage is applied to the metallic gate, the electron gas underneath is depleted. Using two 

surface gates, as shown in Figure 2.2, a narrow channel can be defined with a width W 

and length L. This device is called a quantum point contact (QPC) and is similar to the 

extensively studied metallic point contacts [13,14]. The main difference is that in this 

semiconductor system, W and L are both comparable to the Fermi wavelength and much 

less than the mean free path. Figure 2.2 (a) is a simulation of the potential profile created 

by the two surface gates, showing the resultant saddle point potential. Because W, L are  
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Figure 2.2 (a) Simulation of the resulting potential profile of the two-dimensional
electron gas when a negative voltage is applied to the surface metal gates forming
a quantum point contact. (b) Schematic diagram of a quantum point contact, with
three modes. The width W is comparable to the Fermi wavelength λF. As the
width is decreased, the number of modes flowing through the quantum point
contact can be tuned down to zero.



both less than the mean free path, the channel is effectively one-dimensional, with an 

energy spectrum given by 

 
2 2

*( )
2

x
n x n

kE k E
m

= +
=  (2.8) 

Transport through the QPC is ballistic and occurs through quantized one-dimensional 

subbands. Each transverse mode that flows through the channel contributes a factor of 

22e h  to the conductance G of the QPC. Therefore, the total QPC conductance is given 

by [15-17]  

 
22

i
i

eG
h

= T∑  (2.9) 

where Ti is the transmission probability of the ith subband. 

 The first observation of quantized conductance in a QPC was made in 1988 

[18,19]. For a review, see Refs. [20] and [21]. A scanning electron micrograph of a QPC 

is shown in Figure 2.3 along with the measured conductance. This measurement was 

performed at 125 mK. Each gate has a width of approximately 100 nm with the distance 

between the two gates being 200 nm. As the voltage on the gates is made more negative, 

the channel width is decreased and quantized conductance in units of 22e h  is clearly 

observed. 
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Figure 2.3 Quantum point contact conductance G as a function of side gate voltage VG, 
measured at T = 125 mK. Clear conductance quantization is observed in multiples of 
2e2/h. At VG < -1.8 V, the quantum point contact begins to be pinched off. As VG is 
increased, the width of the quantum point contact is increased continuously, allowing just 
an integer number of one-dimensional subbands to be occupied, resulting in the plateau 
structure. When VG > -1.0 V, the width of the quantum point contact becomes large and 
the conductance resumes ohmic (linear) behavior. Inset: Scanning electron micrograph of 
a quantum point contact fabricated on a GaAs/Al0.3Ga0.7As heterostructure containing a 
two-dimensional electron gas 57 nm below the surface. 



2.4 Quantum Dots and Coulomb Blockade 

 An electron must be provided with a charging energy of e2/2C if it is to be added 

to a conductor with total capacitance C. The capacitance is proportional to the size of the 

conductor, and as the size of the conductor decreases, the charging energy increases. For 

a small conducting island with a small capacitance, this charging energy can become 

quite large, leading to suppression in current, known as the Coulomb blockade effect. 

Nanofabrication techniques has allowed for the realization of small, artificially created, 

nanostructures with small capacitances (C ~ 10-18 F). The Coulomb blockade was first 

observed in the I-V characteristics of small metal grains [22,23]. This effect was then 

used to explain single-electron charging in semiconductor devices [24]. An external side 

gate can be used as a way of tuning the dot through the Coulomb blockade [25], just as in 

a field-effect transistor. 

 A two-dimensional electron gas is ideal for creating small conducting islands of 

arbitrary geometry to investigate electron transport in the Coulomb blockade regime. A 

small region can be defined in the 2DEG by placing two quantum point contacts in series 

(with additional confinement gates), as shown in Figure 2.4. This zero-dimensional 

nanostructure, possessing a discrete energy spectrum, is called a quantum dot. Electrons 

are confined in all three dimensions due to electrostatic depletion from the patterned 

gates in the x-y plane and the strong electrostatic confinement to the quantum well in the 

z-direction. Figure 2.4 (a) shows a simulation of the quantum dot potential for a typical 

gate geometry. The tunnel barriers coupling the quantum dot to the large 2DEG 

reservoirs are defined by quantum point contacts. Therefore, the width and height of the 

barriers can be easily tuned by simply changing the voltage applied to the gates. This  
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Figure 2.4 (a) Simulation of the resulting potential profile of the two-dimensional 
electron gas when a negative voltage is applied to the surface metal gates forming a 
quantum dot. Electrons are confined in all three dimensions to the small center region. 
Two tunable tunnel barriers are formed using quantum point contacts. (b) Circuit diagram 
of a quantum dot. The dot is connected to the source and drain by tunnel junctions, 
represented as split boxes. The gate is capacitively coupled to the dot. (c) The tunnel 
junctions are modeled as a parallel combination of a resistor and a capacitor. Tunnel 
junctions permit transfer of charge between the dot and the leads. 
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flexibility is what makes semiconductor quantum dots a well-controlled system. 

 Figure 2.4 (b) shows a circuit diagram modeling a quantum dot as a small 

conducting island coupled to its environment through two tunnel junctions and a 

capacitively coupled side gate with variable voltage. A small source-drain voltage VSD is 

applied across the dot. The tunnel junctions are modeled as “leaky” capacitors (parallel 

arrangement of a capacitor and resistor). There are two basic requirements that need to be 

satisfied to observe the Coulomb blockade. The first is that the charging energy must be 

much larger than the thermal energy kBT: 

 
2

2 B
e k T
CΣ

�  (2.10) 

This ensures that electrons will not be able to tunnel from the contact leads to the 

conducting island due to their thermal energy. The total capacitance of the system CΣ 

includes the gate capacitance, the two tunnel junction capacitances, and any stray 

capacitance in the system. That is, CΣ is the capacitance between the conducting island 

and the rest of the world. The other requirement is that the charge on the island needs to 

be a well-defined integer (charge quantization). This can be related to a minimum 

resistance for the tunnel junctions by using the RC time constant for the circuit in 

Figure 2.4 (b) and the energy uncertainty relation: 

 
2

2 25.8e hE t h RC h R k
C eΣ

Σ

Δ Δ > → > → Ω� ∼  (2.11) 

where Δt = RCΣ is used as the time required to charge or discharge the island. In the 

laboratory, we satisfy these two conditions by making the conductor small, working at 

low temperatures, and by weakly coupling it to the junctions. 
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 We can analyze the circuit in Figure 2.4 (b) using a simple approach [26] where 

we assume that the Coulomb interactions between the electrons are parameterized by a 

constant capacitance. Let the total charge on the conducting island equal -Ne, where N is 

an integer. In general, for a circuit with n conductors, the total charge Qi of the ith 

conductor can be written in terms of its electrostatic potential Vi as 

  (2.12) 
1

n

i i
j

Q C
=

= ∑ j jV

where the coefficient Cij is the capacitance matrix. The electrostatic energy can be written 

as a sum over all n conductors: 

 1

1 1 1 1 1

1 1 1
2 2 2

n n n n n

i i i ij j i ij j
i i j i j

U QV V C V Q C−

= = = = =

= = =∑ ∑∑ ∑∑ Q  (2.13) 

It is important to emphasize that the charge in Equation (2.12) is a polarization charge 

and does not have to be quantized in units of electron charge. 

 Let 

 i i

i

C V Ne
CΣ

−
Φ = ∑  (2.14) 

be the potential on the dot (with i summing over any capacitance present in the system). 

The total electrostatic energy of the dot with N electrons is 

 21 ( ) (
2 i i i i i

i i
U C V CV V= − Φ −∑ ∑ )− Φ  (2.15) 

Equation (2.15) is the total energy stored in the capacitors minus the work done by the 

external voltage sources. Substituting Equation (2.14) into (2.15), summing only over the 

side gate voltage source (assume VSD = 0), and taking only the terms dependent on N, we 

have 
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CΣ

−
=

)  (2.16) 

which represents the difference in energy of the induced and actual charge in a capacitor, 

CΣ. 

 Equation (2.16) assumes a continuous energy spectrum for the quantum dot. 

However, because of confinement, electrons in the dot occupy quantized energy levels 

with a finite level spacing. Assuming that the discrete energy spectrum is independent of 

the number of electrons in the dot, we can simply modify Equation (2.16) to include the 

energy of the occupied single particle states Ei [27]: 

 
2

1

( )( )
2

N
G G

i
i

C V NeU N E
C =Σ

−
= + ∑  (2.17) 

The electrochemical potential of the quantum dot is, by definition [28], 

 
2 1( ) ( ) ( 1) ( )

2
G

dot G N
CeN U N U N N e V E

C C
μ

Σ Σ

= − − = − − +  (2.18) 

The charging energy, which is the addition energy that is required to add a single electron 

to the quantum dot, is given as the difference in the electrochemical potential of the N + 1 

electron dot and the N electron dot: 

 
2

1( 1) ( )C dot dot N N
eE N N E
C

μ μ +
Σ

≡ + − = + − E

N

 (2.19) 

It is this energy, which can become very large for very small total capacitance, that is the 

source of the Coulomb blockade. 

 In GaAs quantum dots, EC can range from several milli-electron volts for small 

dots in the few-electron regime to a few hundred micro-electron volts, if the dot is large 

and contains several hundred electrons. For large dots, we can replace the  term 1NE E+ −
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in Equation (2.19) with a mean level spacing δE that is inversely proportional to the dot 

area Adot. The number of electrons N on a dot can be approximated as N = nsAdot, and 

because the density of states is a constant, we find 2 FE E Nδ = . The factor of 2 comes 

from the spin degeneracy of the states. For EF = 15 meV and N = 500 electrons, 

δE ~ 0.06 meV. 

 By shifting the bottom of the conduction band of the quantum dot using the 

external side gate, we can lift the Coulomb blockade and add or remove just a single 

electron, resulting in a conductance peak. The spacing between the peaks ΔVG can be 

determined from equating the electrochemical potential of the two charge states: 

 2

1

( 1, ) ( , )dot G G dot G

G N
G

N V V N V

C eV E
eC C NE

μ μ

Σ
+

Σ

+ + Δ =

⎛
→ Δ = + −⎜ ⎟

⎝ ⎠

⎞  (2.20) 

Ignoring the effects of the discrete energy spectrum ( 0Eδ → ), Equation (2.20) 

simplifies to 

 C
G

G

EeV
C eα

Δ = =  (2.21) 

where the ratio of gate capacitance to total capacitance α = CG/CΣ is the “capacitive lever 

arm” that converts the change in side gate voltage to the change in the quantum dot 

energy. We see that the conductance peaks are periodic in VG. If a finite energy level 

spacing δE is included, the conductance peaks are, in general, not periodic.  

 Figure 2.5 provides a simple graphical interpretation of the analysis presented 

above. Figure 2.5 (a) shows the difference between the induced charge and the actual 

charge on the quantum dot as a function of the side gate voltage. The dot can only contain 

an integer number of electrons. Consequently, as VG is varied, the total charge on the dot  
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Figure 2.5 (a) Charge as a function of gate voltage VG in a quantum dot. The actual 
charge state of a quantum dot is quantized, and increases in a step-wise manner with VG. 
Normally, for a large conductor, the quantization of charge can be ignored and the charge 
induced by the capacitively coupled side gate displays a smooth, linear increase. (b) Free 
energy as a function of side gate voltage. Each charge state (difference between the actual 
and induced charge) results in a different energy parabola. It is energetically favorable for 
the number of electrons on the dot to change by one only at the points where these 
parabolas intersect. (c) Measured conductance oscillations as a function of the side gate 
voltage. A peak in conductance (non-zero current) is observed only when two dot charge 
states are degenerate in energy, and electrons tunnel on and off the dot. 



increases in steps, as opposed to a linear increase in charge that is expected to occur due 

to the induced charge of CGVG. Figure 2.5 (b) is a plot of the electrostatic energy, given 

by Equation (2.16), for different values of N, also as a function of the side gate voltage. 

Each charge state of the dot yields a parabola with a minimum defining a stable region. 

Within these stable regions, the charge on the quantum dot does not change, and the dot 

is in the Coulomb blockade regime. When VG is tuned to a position where two different 

parabolas intersect, these two charge states are degenerate in energy, and therefore the 

charge of the quantum dot fluctuates between Ne and (N + 1)e. Only when this condition 

is met [Equation (2.20)], can an electron tunnel on or off the dot, resulting in a non-zero 

conductance through the quantum dot. The actual measured conductance of a single 

quantum dot is shown in Figure 2.5 (c), clearly illustrating the Coulomb blockade peaks. 

 In the classical Coulomb blockade regime where the thermal energy kBT is larger 

than the level spacing, the Coulomb blockade conductance peak lineshape is given by 

 2 0
0

(( ) cosh
2.5
G G G

G
B

eC V VG V G
C k T

−

Σ

⎛ ⎞−
= ⎜

⎝ ⎠

)
⎟  (2.22) 

Here, G0 is the peak height, and VG0 is the location of the peak. In the quantum Coulomb 

blockade regime, where the level spacing is larger than the thermal energy, and transport 

occurs only through a single state, the conductance peak lineshape is given by 

 2 0
0

(( ) cosh
2.0
G G G

G
B

eC V VG V G
C k T

−

Σ

⎛ ⎞−
= ⎜

⎝ ⎠

)
⎟  (2.23) 

 Up to now, we have only discussed the linear response regime. When a finite 

voltage bias VSD is applied across the dot, it opens up a transport window of eVSD for 

tunneling through the quantum dot. The complete energy profile of the quantum dot is 

shown in Figure 2.6 (a). The dot is coupled to two electron reservoirs, the source and 

21 



drain, by two tunnel barriers. The Coulomb blockade can be lifted either by changing the 

bottom of the conduction band with VG or by applying a source-drain voltage VSD. The 

voltage bias changes the electrochemical potential in the leads, such that if the Fermi 

level in the source is larger than the Coulomb blockade gap, electrons can tunnel into the 

dot. If VSD is further increased, electrons may tunnel through excited states. 

 We can incorporate a source-drain voltage to the capacitive charging model 

discussed above as follows [29]. Let the voltage bias VSD be applied on the left lead 

(source) of the dot, with the tunnel junction capacitance CS. For zero source-drain voltage 

we assumed CS was a capacitance to ground (a stray capacitance) that was included in CΣ. 

Now, we must include the work done by the source-drain voltage, CSVSD, in the sum of 

Equation (2.15). The electrostatic energy is therefore 

 ( )2

( )
2

G G S SDC V C V Ne
U N

CΣ

+ −
=  (2.24) 

Electrons can tunnel on or off the dot at either the source or the drain, giving four 

different tunneling events. For any tunneling event to occur, the energy difference 

between the initial state and the final state must be less than zero. This gives four 

inequalities 

 

( )1 1
2
1 1
2 2

G G S SD

G G S SD

C V C C VN N
e e

C V C VN N
e e

Σ

2
−

+ > − > −

+ > + > −
 (2.25) 

which map out diamond regions in VSD-VG space where the conductance is zero 

(tunneling is blocked) and the dot is in the Coulomb blockade. These regions, shown in 

Figure 2.6 (b) are known as the Coulomb blockade diamonds. The diamond shapes arise 

because of the capacitive coupling between the lead capacitance CL and the dot. The  
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Figure 2.6 (a) Energy profile of a quantum dot. The quantum dot has a discrete energy 
spectrum, with electrons filling up the discrete levels up to µdot(N). The charging energy 
is given as EC = µdot(N+1) - µdot(N). Two tunnel barriers separate the quantum dot from 
the electron reservoirs. The Coulomb blockade can be lifted either by raising µsource 
relative to µdrain using a voltage bias VSD applied across the dot or by raising the bottom 
of the dot conduction band using the side gate voltage VG. (b) A measurement of the 
conductance as a function of both VSD and VG results in Coulomb blockade diamonds, 
periodic in VG. The boundaries of the diamonds are defined by four inequalities (see text) 
and can be used as a measure of the dot parameters. Inside the diamond region, 
conductance is zero due to Coulomb blockade. As VSD is increased, electrons can begin 
tunneling through the dot via discrete energy levels, giving rise to conductance peaks 
running parallel to the diamond edges. 
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diamond dimensions reveal several key device parameters, including the charging energy 

and gate capacitance. Furthermore, the excited states will give rise to conductance peaks 

running parallel to the diamond edges. Plots of the Coulomb diamonds can be thought of 

either as the addition spectrum of a quantum dot, because each diamond corresponds to 

an additional electron added to the dot, or the excitation spectrum, because the discrete 

level spectrum can be directly measured from the location of the conductance peaks. 

 Figure 2.7 (a) shows a finite bias Coulomb blockade measurement of a single 

quantum dot in the few-electron regime taken at 60 mK. Details of the fabrication process 

and measurement techniques are described in Chapter 3. The differential conductance 

dI/dVSD is plotted as a function of the side gate voltage VG and the source drain voltage 

VSD. For large dots, one normally finds adjacent Coulomb diamonds of identical 

dimensions. Here, because the dot contains just a few electrons, the constant interaction 

model assumed above fails and Coulomb interactions cannot be simply parameterized. In 

fact, the area of each Coulomb blockade diamond is directly proportional to the energy of 

the corresponding charge state, and differences in the diamond areas observed in Figure 

2.7 (a) is indicative of a shell structure for the quantum dot. Figure 2.7 (b) is the 

differential conductance of the same dot when tuned to the one-electron regime. The 

large charging energy is an indication of the small size of the dot and the absence of 

diamonds for more negative side gate voltage or large source-drain voltage confirms that 

the dot contains either zero or one electron. Excited states can clearly be seen as 

conductance peaks parallel to the diamond edges. 
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Figure 2.7 (a) Differential conductance of a few-electron quantum dot as a function of its 
side gate voltage and the source-drain bias, measured at T = 60 mK. (b) Differential 
conductance of the same dot as in (a) when tuned to the one-electron regime. Clear 
excited state features are observed. 
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2.5 Double Quantum Dots 

 We can investigate the coupling between quantum dots by forming an artificial 

molecule consisting of two quantum dots tunnel-coupled to each other, as shown in 

Figure 2.8 (a). Figure 2.8 (b) shows the circuit equivalent of the double quantum dot 

artificial molecule. This is a simple generalization of the circuit diagram of a single 

quantum dot to that of a double dot with two independent side gates and an inter-dot 

tunnel junction parameterized by a capacitance C12. The side gate voltages are VG1 and 

VG2. Dot 1 has a total capacitance C1 and dot 2 has total capacitance C2. We can analyze 

this device as we did for the single dot, calculating the electrostatic energy using 

Equation (2.13). This model is a classical capacitive circuit model and does not include 

effects of inter-dot tunneling [30]. It is assumed that the electrons are localized on one dot 

at a time, with the charge on each dot being an integer number. Following the derivation 

presented in Ref. [31], we sum over all the capacitors present in the system and obtain, 

for VSD = 0, 

 2 2
1 2 1 1 2 2 1 2 12 1 2

1 1( , )  ( ,  )
2 2C C C GU N N E N E N N N E f V V= + + + G  (2.26) 
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Figure 2.8 (a) Scanning electron micrograph of a few-electron double quantum dot 
fabricated on a GaAs/Al0.3Ga0.7As heterostructure containing a two-dimensional electron 
gas 52 nm below the surface. (b) Circuit diagram of a double quantum dot. The dots are 
coupled together by a tunnel junction, parameterized by a capacitance C12. 



If the two dots are identical, with C1 = C2 = CΣ, Equation (2.26) simplifies to [30] 
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where α = C12/CΣ. The electrostatic energy of the double quantum dot defines a set of 

paraboloids in VG1-VG2 space where, similar to the single dot case, the minima represent 

points of charge stability, i.e., a stable configuration of N1 electrons on dot 1 and N2 

electrons on dot 2. Only at the intersections of these paraboloids, will electrons tunnel 

through the double dot to yield a current. At these intersections, the Coulomb blockade is 

lifted and the measured conductance is non-zero.  

 Figures 2.9 and 2.10 show schematics of the conductance versus the two side gate 

voltages VG1 and VG2 for different coupling regimes. These plots are called stability 

diagrams because in the regions where the Coulomb blockade stops electron transport, 

the double dot is in a well-defined (stable) charge state given by (N1,N2). For two 

independent dots, α = 0 and the stability diagram is just a series of squares with non-zero 

conductance only at the intersections, as shown in Figure 2.9 (a). These are basically a 

series of Coulomb blockade peaks for each dot acting independently. For such decoupled 

dots, the side gate voltage of, say, dot 1 changes the charge of dot 1 only, without 

affecting the charge on dot 2. If inter-dot coupling is very strong, the double dot becomes 

just one large composite dot. In this configuration, both side gates couple to the single 

large dot with total charge NT = N1 + N2. Each of the two gates couples to this large 

composite dot, and can tune the charge state NT. The stability diagram, shown in 

Figure 2.9 (b), is therefore just a series of diagonal Coulomb blockade peaks. 
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Figure 2.9 Stability diagrams of a double quantum dot showing the boundaries of the 
stable states. (a) When the coupling C12 is zero, the stability diagram is given by a series 
of squares where the intersections correspond to a conductance peak. (b) When coupling 
is strong, the double dot becomes one large dot and both side gates couple to the single 
dot equally, results in a series of diagonal Coulomb blockade peaks. 
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 The regime of finite inter-dot tunneling cannot be described by the electrostatic 

model discussed above. When tunnel-coupling is allowed, the assumption of charge 

being quantized in each dot is not applicable. Inter-dot tunnel-coupling removes the 

excess energy of the system that would otherwise arise from frustrated polarized 

configurations of the double dot if each dot would be forced to maintain an integer 

number of electrons. It is the inter-dot tunneling, and not the inter-dot capacitive 

coupling, that is the dominant effect. 

 In Figure 2.10, the tunnel-coupled double dot stability diagram is shown. We also 

plot a one-dimensional slice along VG1 = VG2 which helps to demonstrate the effect of the 

tunneling. For the charge configuration of (0,0) and (1,1), the energy surface is given by 

the two parabolas, as derived above, that intersect at a single point with a higher parabola 

corresponding to the more energetic polarized charge states (0,1) and (1,0). For two dots 

that are not coupled, a single conductance peak is observed at this intersection. When 

tunneling is introduced, electrons are shared between the two dots which lower the 

ground state energy of the polarized charge states, shown by the red curve. There now 

exist two intersections, and the single conductance peak is split into two peaks. The peak 

splitting forms a honeycomb pattern in the stability diagram. The peaks correspond to 

“triple points” where the three distinct charge configurations are degenerate in energy. 

 In tunnel-coupled double dots, electrons are shared between the two dots and 

form an analog of a covalent bond, with a binding energy Eint = Fe2/4CΣ. Here, 

F = 2ΔVS/ ΔVP is the fractional peak splitting, as defined in Figure 2.10. This was first 

shown experimentally by Livermore et al. [30]. Theoretical calculations were performed 

by Golden and Halperin [32,33] and Matveev et al. [34,35]. 
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Figure 2.10 When inter-dot tunneling is included, the original vertices of the stability 
diagram in Figure 2.9 (a) split into two peaks, resulting in a honeycomb stability pattern. 
The right panel shows a slice at VG1 = VG2 for the first unit cell. Tunneling lowers the 
energy of the polarized (1,0) and (0,1) states (red curve) by an amount Eint, resulting in a 
splitting of the conductance peaks. 



 Figure 2.11 shows the measured stability diagrams of a few-electron double 

quantum dot device that we fabricated and measured [36]. From finite-bias Coulomb 

blockade measurements of each dot independently (for example, see Figure 2.7), we are 

able to confirm that these quantum dots are indeed few-electron quantum dots. We can 

couple the two quantum dots to form a double dot and measure the stability diagram for 

weak and strong coupling. Tunnel-coupled few-electron quantum dots can serve as spin 

qubits for quantum information processing, as proposed by Loss and DiVincenzo [37]. 
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Figure 2.11 Measured stability diagrams of the few-electron double quantum dot shown 
in Figure 2.8 (a). Three different regimes, from weak to strong coupling, is observed, 
corresponding to the schematics shown in Figures 2.9 and 2.10. Measurements were 
performed at T = 60 mK. 



III 

EXPERIMENTAL METHODS 

 

3.1 Overview 

 The experiments presented in this thesis require successful fabrication of 

nanoscale devices and a thorough understanding of low-noise electronic measurement 

techniques and cryogenic techniques. This chapter covers the experimental considerations 

and methods necessary to conduct low-temperature transport measurements. The major 

focus is on techniques related to the GaAs/AlGaAs system. Fabrication and experimental 

methods related to the Ge/Si nanowire systems are described in Chapter 6 and Chapter 7. 

 Section 3.2 begins with a description of the GaAs/AlGaAs heterostructures from 

which split-gate devices are made, followed by an overview of the fabrication and 

lithography process. Section 3.3 describes the low-temperature systems used to cool 

down the devices. The electronic measurement circuits are described in Section 3.4, 

where the procedure on operating the superconducting solenoid to generate a magnetic 

field is also included. Finally, in Section 3.5, Shubnikov-de Haas measurements of the 

two-dimensional electron gas are presented. 

 

3.2 GaAs/AlGaAs Split-Gate Device Fabrication 

 Molecular beam epitaxy [6,7] is the method of choice for growing 

heterostructures due to the highly detailed control available over the growth parameters. 

High quality structures in terms of purity, interface sharpness and crystalline perfection 

can be grown. The GaAs/AlGaAs heterostructures used in this thesis were grown by 
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Micah Hanson from the Gossard group at the University of California, Santa Barbara. 

Figure 3.1 shows a schematic of a typical molecular beam epitaxy ultra high vacuum 

chamber. Several sources, called Knudsen effusion-cells or K-cells, are circularly 

positioned around the sample holder. The temperature of each K-cell can be 

independently set and regulates the resulting flux of each element. To avoid any non-

uniformity due to the different positions and tilts of the K-cells, the sample is rotated 

during growth. The substrate is also heated during growth so that defects can be 

overcome through annealing. Typically, the wafer is grown on a semi-insulating GaAs 

substrate with a [100] crystal orientation. If a back gate is desired, an n-doped substrate is 

used. A 100 nm GaAs buffer layer followed by a 20 period 2.5 nm Al0.3Ga0.7As / 2.5 nm 

GaAs superlattice is deposited to provide an atomically smooth surface. This eliminates 

any effects from defects that may be present in the substrate. A 1000 nm GaAs layer is 

then deposited to further separate the heterojunction where the 2DEG will form from the 

substrate. A layer of Al0.3Ga0.7As follows, interrupted by a monolayer of Si atoms 

(donors). The Si atoms are intentionally spaced away from the heterojunction to reduce 

ionized-impurity scattering. This is known as modulation doping [5], and allows for high 

electron mobility. Finally, a thin 5 nm GaAs cap layer is deposited to prevent the 

aluminum in Al0.3Ga0.7As from oxidizing. A typical wafer profile is shown in Figure 3.2. 

 When selecting a wafer, typical parameters to consider are the carrier sheet 

density ns, mobility μ, and the distance of the 2DEG below the surface.  

There is a tradeoff between higher mobility and minimum feature size defined by 

electrostatic surface gates. Higher mobility samples require a larger Al0.3Ga0.7As spacer 

layer and, in general, a deeper 2DEG. However, as the 2DEG is made deeper, the  
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δ-doped Si
5 nm GaAs Cap

d1 = 25 nm  Al0.3Ga0.7As

d2 = 22 nm  Al0.3Ga0.7As
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2.5 nm Al0.3Ga0.7As/2.5 nm GaAs
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Semi-Insulating
GaAs Substrate
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20 period superlattice

Figure 3.1 Schematic diagram of a molecular beam epitaxy ultra high vacuum (UHV) 
chamber. Each Knudsen effusion-cell contains an element that is needed to grow or dope 
the heterostructure. The wafer is heated and rotated during growth. 

Figure 3.2 Wafer profile of a GaAs/AlGaAs heterostructure (wafer number 020227B-
MH2) used in this thesis. For wafer 020227C-MH3, d1 = 30 nm and d2 = 22 nm. 
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resolution one can achieve with surface gates gets worst. Preference is given to shallower 

2DEGs because of interest in smaller quantum dots in the few-electron regime, where 

mobility is not of concern. 

 The following steps are taken in order to successfully fabricate split-gate devices 

starting from the unprocessed wafer grown at Santa Barbara: 

(1) Cleave the wafer 

Fabrication starts with cleaving small chips, approximately 2 mm by 3 mm in size, out of 

the 3 inch GaAs/AlGaAs wafers. The wafer is cleaved, by hand, with a diamond scribe 

and a ruler covered with Teflon tape. The wafer is first cleaved into 4 quarters, and then 

into 3 mm strips. The 3 mm strips are further cleaved into 2 mm by 3 mm chips. 

(2) Clean the chips 

Cleaning is performed in three steps. First, the chips are placed in hot trichloroethylene 

for 15 minutes in order to remove any grease or oil on the chip surface. Then, the chips 

are sonicated for 15 minutes in acetone to dislodge any dirt or particles stuck to the 

surface. Finally, the chips are sonicated in methanol for 10 minutes to remove any residue 

left by acetone. Once the chips are removed from methanol, they are blow-dried with 

ultra-pure nitrogen gas. 

(3) Spin on PMMA 

In order to prepare the samples for electron beam lithography, the chips are coated with a 

positive e-beam resist called polymethylmethacrylate (PMMA). Depending on the feature 

size and the thickness of the metal to be evaporated, one, two, or three layers of PMMA 

is used. One layer is generally not used because of possible defects the may arise in the 

PMMA layer. However, if extremely small features are desired, one layer of PMMA can 
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be used. Two layers of PMMA provide the best option in terms of high resolution and 

low probability of defects. If a thick metal layer is desired, for example, when making 

bonding pads and contacts, three PMMA layers are spun on the chip. After each PMMA 

layer is spun, the chip is placed on a hotplate set to 180°C. In order to allow for an 

undercut, which facilitates the process of lift-off after metallization, two different 

solutions of PMMA are used: 2% 950 K (950 kDa) PMMA in anisole by weight and 2% 

495 K (495 kDa) PMMA in anisole by weight. 

(4) Electron Beam Lithography 

Once the chip has a PMMA coating, it is ready to be patterned using electron-beam 

lithography. The electron beam severs the bonds in the PMMA macromolecule allowing 

the smaller molecules that are formed to be removed by a chemical developer at a later 

stage. The electron microscope used was a JEOL 6400 scanning electron microscope 

controlled by the Nabity Pattern Generation System. 

(5) PMMA Developing 

To develop the exposed areas of the PMMA, the chips are first rinsed with isopropyl 

alcohol, then placed in a chemical developer for one minute, and again rinsed with 

isopropyl alcohol. The chemical developer is a solution consisting of 375 ml isopropyl 

alcohol, 125 ml methyl-isobutyl ketone, and 6.5 ml methyl-ethyl ketone. Finally, the 

chips are blow-dried with ultra-pure nitrogen gas. 

(6a) Metallization 

A thermal evaporator is used to deposit the metal gates or ohmic contacts. Below is a 

table showing the usual layers used for metallization. 

 

38 



For metal gates: 

Layer Metal Thickness 
1 Chrome (Cr) 5 nm 
2 Gold (Au) 20 nm 

 

For ohmic contacts: 

Layer Metal Thickness 
1 Nickel (Ni) 5 nm 
2 Gold (Au) 20 nm 
3 Germanium (Ge) 25 nm 
4 Gold (Au) 10 nm 
5 Nickel (Ni) 5 nm 
6 Gold (Au) 40 nm 

 

(6b) Etching 

If a trench is desired instead of a metal gate, either the home-built ion miller (dry etch) or 

a quick chemical procedure (wet etch) can be used to etch out the patterns made with 

electron beam lithography. An etch permanently removes the patterned region of the 

2DEG. The ion miller uses an argon plasma, and mills the heterostructure at a rate of 

approximately 1 nm/s. The advantage of using an argon plasma is that the argon ions do 

not dope the GaAs heterostructure. Using a focused ion beam of Ga+ ions tends to embed 

Ga in the heterostructure and destroys the sample. It is usually sufficient to mill as deep 

as the Si doped layer, and not any deeper, to remove the 2DEG.  

 If resolution is not of concern, it is quicker to use a chemical etch. The procedure 

for the wet etch is as follows: 

1. Place a beaker with 10 ml citrus feed stock (Citric Acid:Water in 1:1 by weight) 

on a hotplate set to 50°C. This is the etch solution. 

2. Dip the sample in H2O (Beaker 1) 
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3. Dip the sample for 5 seconds in 1:5 HCl:H2O 

4. Dip the sample for 5 seconds in 1:5 NH4OH:H2O 

5. Dip the sample in H2O (Beaker 1) 

6. Dip the sample in the etch solution. Etch rate is 2 nm/s for AlGaAs and 10 nm/s 

for GaAs 

7. Dip the sample in H2O (Beaker 2) 

8. Dip the sample in H2O (Beaker 3). Only at this point does the etch stop. 

It is generally required to cover any chip that was etched with PMMA so that the 

aluminum in the now exposed AlGaAs layer does not oxidize. 

(7) Lift-Off 

To lift off the PMMA, the chips are placed in acetone for several hours. Ultrasounding 

the chips in acetone is not recommended because it tends to lift-off metal even from the 

desired metallization locations.  

 

Figure 3.3 shows the lithography process from spinning until lift-off. 

 

(8) Annealing 

If ohmic contacts were deposited, an annealing step is required to allow the metal to 

diffuse through the wafer and make contact with the 2DEG. The annealing steps are: 

Step Duration Temperature Purpose 
1 1 minute 110°C Drive off moisture 
2 10 seconds 260°C Prime the sample 
3 20 seconds 410°C Anneal the sample 
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EtchEvaporate
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Electron Bea m

950 K PMMA

495 K PMMA
2DEG

GaAs/Al0.3Ga0.7As 

Figure 3.3 The electron-beam lithography process begins by spinning on two layers of 
950 K PMMA and 495 K PMMA. After being exposed to an electron beam, the sample is 
developed, and the area that was exposed to the electron beam is washed away. At this 
point, the sample is ready for metallization or for etching. An undercut is formed due to 
the lower molecular weight of the PMMA in the lower layer. When etching, no undercut 
is needed, and two layers of 950 K PMMA can be used. After lift-off, the sample is left 
with either a surface metal gate or a trench in the area that was exposed to the electron-
beam. 
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Ohmic contacts are fabricated before any other metal gates are deposited because of this 

annealing step. Once the contacts are annealed, the fabrication process is repeated starting 

at step (2) above. 

(9) Packaging 

The last step in the fabrication process is packaging the chip. This includes placing the 

chip on a chip carrier and wirebonding the contacts. The cryosystems are equipped with 

PLCC (ceramic) sockets (AMP Corp., Part # 641444-2), that take the 28 pin JEDEC- 

standard PLCC chip carriers (Jade Corp., Part # 28M270-J-060-U-06-4). These are non-

magnetic carriers. The sample is glued on the chip carrier with GE varnish, and then 

placed in an oven at 100°C overnight. Gold wire is then used to wirebond all the gates 

and contacts. 

 Figure 3.4 shows a photograph of a complete, packaged device. Further details 

concerning device fabrication can be found in Ref. [38]. 

 

3.3 Cryogenic Systems 

 The constraint of  needs to be met in order to be able to investigate 

charge and spin effects in the semiconductor quantum dots and nanowires studied in this 

thesis. Here, E is some relevant energy scale such as the charging energy E

Bk T E�

C for a 

quantum dot (see Chapter 2) or the Josephson energy EJ for a S-N-S junction (see 

Chapter 7). Therefore, we are required to perform experiments at low temperatures. 

Starting at room temperature (300 K), we can work our way down to low temperatures 

using liquid nitrogen (77 K), liquid helium (4.2 K), evaporatively-cooled helium 

(~ 1.4 K), 3He systems (~ 300 mK) and 3He/4He dilution refrigerators (~ 30 mK). 
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Figure 3.4 (a) Photograph of the ceramic chip socket and a sample mounted on a chip 
carrier. (b) Schematic showing the 28-pin PLCC chip carrier and the pin numbering 
employed in all of the cryostats. Only 24 of the 28 pins are connected, leaving 4 pins that 
are not connected (NC). 
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3.3.1 4.2 K Insert 

 For a quick test of the samples, 4.2 K suffices, and this can be easily achieved by 

dipping the sample into a Helium storage dewar. If a magnetic field is required, for 

example, when performing Hall measurements (Section 3.5), the dewar for the 3He 

system can be used. A new 4.2 K insert was built because older inserts were not reliable 

and had broken electrical leads and several shorts. The 4.2 K insert is one of the most 

useful pieces of equipment in the laboratory. Therefore, details regarding the construction 

of the 4.2 K insert are provided below. Furthermore, because the 4.2 K insert is rather 

simple, compared to the dilution refrigerator insert, we can use this opportunity to 

analyze the heat conduction of this simple insert to gain a better understanding of heat 

conduction in more complicated systems. It should be noted that the 3He insert is very 

similar in design to the 4.2 K insert described below, with the major difference being the 

diameter of the insert: the 3He insert needs to be especially thin so that in can be placed 

inside the vacuum insert for 3He operation. 

 Figure 3.5 shows the 4.2 K insert design. This insert is placed inside a stainless 

steel tube (not shown in the figure) and then placed into the dewar. It is important to 

minimize the heat flow, both in the form of conduction and radiation, that occurs through 

the insert from the outside environment into the cryostat. For this insert, thermal 

conduction can take place in the inner tube, the electrical wires and the outer tube. 

Therefore, the insert is made of a long, thin stainless steel rod with manganin wires (Lake 

Shore Cryotronics, Inc., Part # MW-36) running from the top connector box all the way 

down to 1 kΩ resistors at the bottom of the insert. At the top of the insert there is a 24 pin  
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Figure 3.5 Schematic of the 4.2 K insert. The top of the insert has both a 10-pin military 
connector and a 24-pin Fischer connector. Manganin wires from the top connectors are 
twisted along the insert, and are soldered onto 1kΩ resistors at the bottom of the insert. 
Phosphor bronze wires are used from the resistors down to the sample. The chip socket is 
mounted on a holder that can be rotated. Copper baffles and microwave frequency 
radiation-absorbing foam are placed along the insert. 



Fischer connector and a 10 pin military connector. These connectors are hermetically 

sealed. The 1 kΩ resistors at the bottom of the insert, together with the capacitance of the 

wires, behave like low pass filters, and therefore reduce the high frequency noise 

traveling down the wires. After the 1 kΩ resistors, phosphor bronze wires (Lake Shore 

Cryotronics, Inc., Part # QL-36) were used to connect to the chip socket. This is the same 

chip socket used in the 3He insert and the 3He/4He dilution refrigerators and allows 

samples to be easily tested on the 4.2 K insert and later moved to the other systems. The 

chip socket sits between two holders that can rotate 90 degrees, allowing for the sample 

to be aligned in either a parallel or perpendicular position relative to the magnetic field. 

The 10 wires from the military connector are provided for any additional features that one 

may need, such as an LED, a thermometer, or a Hall probe. 

 Thermal radiation occurs down the inter-tube spacing by blackbody radiation. 

From the Stephan-Boltzmann Law, the rate of radiation Q  is �

  (3.1) 4Q ATσ=�

where A is the cross sectional area, T is the temperature, and 8 25.67 10 W m Kσ −= × 4  is 

the Stefan-Boltzmann constant. Blackbody radiation from 300 K to 4 K is approximately 

50 mW/cm2. To minimize blackbody radiation, 7 copper baffles are evenly spaced along 

the rod. Moreover, Ecosorb microwave frequency radiation-absorbing foam is wrapped 

around the insert to further minimize thermal radiation. The baffles and foam help reduce 

the evaporation rate of the liquid helium inside the dewar by minimizing the amount of 

thermal radiation from the outside environment. 

 The rate of heat flow or, more appropriately, heat leak Q , due to thermal 

conduction in the insert can be calculated from [39,40] 

�

46 



 2 1(Q GK T T )= − −�  (3.2) 

where G is a factor depending on the shape of the thermal conductor and 
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Here, k(T) is the thermal conductivity. To determine G, we use the relation 

 ( ) ( )Q A r k T= −� ∇  (3.4) 

where A(r) is the cross sectional area and T∇  represents the temperature gradient. The 

insert and wires can be considered as long cylindrical conductors, placed along the z axis, 

with constant cross sections A and temperature gradient T∇ = dT/dz. Therefore, 

Equation (3.4) becomes 
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This gives us an expression for G in Equation (3.2). 

 The latent heat of liquid helium at 4.2 K is L = 2.7 kJ per liter. For an insert that is 

immersed in liquid helium, the heat leak   that is generated by the insert boils off the 

liquid and does not warm up the resulting helium gas. This leads to a large helium boil-

off rate because cold helium gas exits the dewar. The rate of evaporation is /L or 

approximately 1.4 liters of liquid helium per hour for one watt. If there is (perfect) heat 

exchange between the insert and the helium gas, the gas that exits the dewar is already at 

Q�

Q�
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room temperature. For this situation, the rate of evaporation of liquid helium is Q /(L+H), 

where the enthalpy H is the energy need to increase 1 liter of helium from 4.2 K to room 

temperature. This reduces the rate of evaporation to approximately 20 ml of liquid helium 

per hour for one watt. 

�

 For the 4.2 K insert,  is the sum of the heat flow in the outer tube, the inner 

tube, and the 34 wires. We assume that the lengths of the tubes and wires are 

z

Q�

2 - z1 = 151 cm and that T1 = 300 K and T2 = 4 K. Stainless steel has K  = 0.10 W/cm-K. 

The outer tube (outer radius R = 0.95 cm and an inner radius r = 0.90 cm) has an area 

A = π(R2 - r2) = 0.30 cm2 and  = 58 mW. The inner tube (outer diameter of 0.95 cm 

and wall thickness of 0.5 mm) area is 0.14 cm

OuterQ�

2 and  =  28 mW. For the manganin 

wires, we first need to determine 

InnerQ�

K . The manufacturer provides a table of the thermal 

conductivity of the manganin wire versus temperature, from which we can obtain k(T). 

Using Equation (3.3), we determine K  = 0.157 W/cm-K. The cross sectional area of the 

wire is A = 0.013 mm2, and therefore, = 0.04 mW per wire, or  = 1.3 mW for 

all 34 wires. The total heat leak of the insert is  = 87 mW of heat flow from the 

outside environment to the liquid helium. It should be remembered that this is the 

maximum rate of heat transfer possible. We expect a lower value for  since the 

wires are wrapped around the metal insert and lose heat to it. Furthermore, heat is lost in 

the radial direction, through the walls of the tubes. The radial heat loss is proportional to 

the difference of the temperature outside the tube to the temperature inside the tube. 

wireQ� wiresQ�

TotalQ�

TotalQ�
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3.3.2 3He/4He Dilution Refrigerators 

 The first suggestions of dilution refrigeration were made by H. London in 

1951 [41]. A brief overview of the principle of dilution refrigeration follows. A more 

complete description can be found in the excellent text regarding dilution refrigerators 

and general low-temperature techniques by O.V. Lounasmaa [42].  

 To understand the underlying principle of dilution refrigeration, it is instructive to 

examine the phase diagram of 3He/4He mixtures, shown in Figure 3.6. Below the 

coexistence curve, two phases, one rich in 3He and one rich in 4He, exist. Due to its lower 

density, the 3He-rich phase resides above the 4He-rich phase. If the mixture is cooled 

below the coexistence curve, the concentration of 3He in the 3He-rich phase increases and 

the concentration of 4He in the 4He-rich phase increases. However, even at T = 0 K, the 

concentration of 3He in the 4He-rich phase is not zero. 

 Figure 3.7 shows a schematic of a dilution unit. Pumping on the 4He-rich phase 

preferentially removes the 3He, which has a higher vapor pressure than 4He. In order for 

3He to cross the phase boundary from the 3He-rich phase to the 4He-rich phase and 

restore the equilibrium condition, energy, in the form of heat from the walls of the mixing 

chamber, is extracted. This acts to cool the sample, which is placed at the end of the cold 

finger that is in thermal contact with the mixing chamber. The 3He that was lost to the 

4He-rich phase by this process is constantly replenished by the circulating flow of 3He.  
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Figure 3.6 Phase diagram of 3He/4He mixture. 
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Figure 3.7 Schematic of a closed-loop dilution refrigerator unit, modeled after the 
Kelvinox 100 used for experiments performed in this thesis. 



3.4 Low Temperature Measurements 

3.4.1 Electronics 

 A voltage-bias measurement is the usual type of measurement performed on 

Coulomb blockaded nanostructures. In the Coulomb blockade regime, the resistance of 

the nanostructure changes by several orders of magnitude as it passes from a conductance 

peak to trough. A voltage-bias setup allows for a fixed voltage drop across the 

nanostructure at all times. The most common setup is a two-probe measurement, shown 

in Figure 3.8 (a). Using a lock-in detector (PAR 124A), a small a.c. excitation voltage is 

added to a variable d.c. offset VSD and is applied to the nanostructure. The current is 

measured using a current preamplifier (Ithaco 1211). The resulting signal is the 

differential conductance dI/dVSD. For zero d.c. offset (zero-bias measurement), the signal 

measured is simply the linear conductance 
0SD

SD SD V
G I V dI dV

=
= = .  

 It is sometimes necessary to perform a four-probe voltage bias measurement. 

Four-probe measurements eliminate the resistances of the leads from the measured signal 

and allows for a direct measurement of the voltage drop across the sample. This is crucial 

if large resistors are placed in series with the sample (as was done when measuring the 

nanowires; see Chapter 7). The setup is shown in Figure 3.8 (b). Two phase-locked lock-

in detectors (PAR 124A), a current amplifier (Ithaco 1211), and voltage amplifier 

(PAR 113) are used to measure dI, dV, and the voltage drop Vdc. 

 A current-bias measurement is sometimes used when the resistance of a 

nanostructure is large and somewhat constant. The setup is almost identical to a voltage-

bias setup, except for a large resistor that is placed in series on the input line to generate 

the bias current. 
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Figure 3.8 Circuit diagrams of (a) two-probe and (b) four-probe voltage bias 
measurements. A small a.c. excitation voltage from a lock-in amplifier added to a d.c. 
offset VSD is passed to the ohmic contact of the quantum dot. In (b) two phased-locked 
lock-in amplifiers are used. Measurements are recorded using Fluke digital multimeters 
communicating via GPIB to a PC running IgorPro. The gate voltages and VSD are 
computer-controlled, using the BiasDAC. 
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 In all these setups, the measured voltage or current from the sample is first 

amplified, either with a PAR 113 voltage amplifier or Ithaco 1211 current amplifier, and 

then transmitted to a PAR 124A lock-in amplifier. The output from the PAR 124A is 

recorded by a Fluke 8842A digital multimeter and communicates with a PC through 

GPIB. IgorPro is used as the data acquisition software. The BiasDAC, used for computer-

controlled voltage output, is described in detail in Ref. [38]. 

 

3.4.2 Magnetic Field Measurements 

 It is sometimes desirable to apply an external magnetic field when performing 

transport experiments. The dilution refrigerator is equipped with a 7 T superconducting 

solenoid and persistent current switch (American Magnetics Inc., Oak Ridge, TN). To 

operate the magnet, we connect it in series with a Dale 1% 0.1 Ω power resistor to a 

bipolar power supply (Kepco BOP 20-20, Flushing, NY). The current-to-magnetic field 

conversion factor was measured to be 0.2609 T/A. A schematic of the setup is shown in 

Figure 3.9. During an experiment, we monitor the voltage drop across the Dale power 

resistor to obtain an accurate measure of the magnetic field. 
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The following steps are used when operating the magnet persistent switch (MPS), [see 

Figure 3.9]: 

Ramp up the magnetic field: 

1. If a current is applied immediately, the MPS resistor R is superconducting, with R ~ 0, 

and current just flows through loop (a) without generating any magnetic field.  

2. To generate a magnetic field, heat the MPS using IMPS = 45 mA. This turns the 

superconducting MPS to normal, and therefore, increases its resistance to a non-zero 

value. 

3. Apply a current I with the Kepco to generate the desired magnetic field (known from 

the conversion factor 0.2609 T/A). Because R is not zero, current is forced to flow 

through the superconducting solenoid, loop (b), and generates a magnetic field. 

 

Set in persistent mode: 

1. Cool down the MPS by setting IMPS to zero. This returns R to the superconducting 

state, and the current I now flows through loop (c). 

2. Ramp the Kepco to zero, however I still circulates in loop (c). 

3. Turn off and disconnect the Kepco. 

 

To turn off the magnetic field: 

1. Connect the Kepco and turn on I to the same value used previously. 

2. Heat the MPS using IMPS = 45 mA. 

3. Slowly ramp I to zero. 
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Figure 3.9 A programmable (computer-controlled) Kepco 20-20 BOP power supply 
delivers up to 20 Amps to the 7 T superconducting solenoid. In order to generate a 
magnetic field, the Magnet Persistent Switch must be operated (see text). For larger 
magnetic fields, two Kepco power supplies can be used, in a parallel configuration, to 
deliver 40 Amps (not shown). 



3.5 Shubnikov-de Haas Measurements 

 After receiving the wafers from the Gossard group, low-temperature Hall 

measurements are usually performed in order to determine the electron sheet density and 

mobility at 4 K, and also to establish that the heterostructures were grown without any 

contaminants. A Hall bar is patterned on the sample using electron-beam lithography, 

with typical dimensions shown in the inset to Figure 3.10 (a), and the Hall resistance and 

magnetoresistance of the sample is measured. 

 The equation of motion for an electron in an applied electric and magnetic field is 

 d
d

m

mv eE ev B
τ

= + ×
G G GG  (3.7) 

where vd is the drift velocity and mτ  is the momentum relaxation time. In matrix notation, 

this is 
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Written in terms of the current density d sJ ev n=
G G

 where ns is the electron sheet density, 

we have  
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with senσ μ= , /me mμ τ= , and the last equality defines the resistivity tensor. 
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 We can measure the resistivity by using the Hall bar geometry shown in 

Figure 3.10 (a). The analysis for low magnetic fields is as follows. Since there is no 

current flowing in the y direction (Jy = 0), the components of the electric field are 

 ,x xx x y yx xE J E Jρ ρ= =  (3.11) 

Also, from I = JxW, Vx = V1 - V2 = ExL and VH = V2 - V3 = EyW, where W and L are the 

dimensions of the Hall bar, we get 

 ,  x H
xx yx

V W V
IL I

ρ ρ= =  (3.12) 

Using Equations (3.9) and (3.10), we find that 

 1
s

yx H

In d dee dBdB
ρ= = V  (3.13) 

 1

s xx s x

IL
en en V W

μ
ρ

= =  (3.14) 

 At high magnetic fields we find that the longitudinal resistivity ρxx oscillates with 

minimums corresponding to plateaus in the Hall resistivity ρyx. The magnetoresistance 

oscillations can be explained as follows. The density of states of the 2DEG becomes a 

sequence of delta functions. As the magnetic field rises, the Fermi energy moves from the 

center of one state to the center of the next state, giving rise to the oscillations in xxρ .  

 When a strong magnetic field is applied perpendicularly to a 2DEG, quantized 

energy states known as Landau levels are formed, with 

 *

1( ) ,  
2n c c

eBE n
m

ω ω= − ==  (3.15) 

where ωc is the cyclotron frequency, B is the applied magnetic field, and m* is the 

effective mass of the electron. Furthermore, the area of the electron orbits 
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 2 14 (
2n

eBS n
h

π )= −  (3.16) 

are quantized in k-space. As the magnetic field is increased, Sn expands, and we find an 

associated periodicity in the inverse magnetic field: 

 
21 4

n

e
B hS

π⎛ ⎞Δ =⎜ ⎟
⎝ ⎠

 (3.17) 

Using the density of states for zero magnetic field, we can write  

 2( 0) 2 sS B nπ= =  (3.18) 

Therefore, we have 

 1 2

s

e
B hn

⎛ ⎞Δ =⎜ ⎟
⎝ ⎠

 (3.19) 

With the sheet density ns of the 2DEG being dependent on the Fermi energy through the 

zero-field density of states, the change in the Fermi energy, and therefore also the 

magnetoresistance, with magnetic field will have a periodicity given by Equation (3.19). 

These are the Shubnikov-de Haas oscillations. 

 The preferred method to calculate the sheet density is to plot the maxima of the 

longitudinal resistivity as a function of 1/B. This will give a straight line with a slope 

proportional to the sheet density: 

 2
(1/ )s

e nn
h B

Δ
=

Δ
 (3.20) 

with n being the peak index. 

 Figure 3.10 (a) shows both the longitudinal and transverse (Hall) resistivity for a 

typical measurement performed at 4.2 K. As expected, the minimums in the oscillations 

correspond to plateaus in the transverse resistivity. Figure 3.10 (b) is a plot of the 
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longitudinal resistivity versus 1/B, showing the periodic oscillations. The inset shows a 

straight line fit of the peak index versus 1/B that allows for the determination of the sheet 

density using Equation (3.20). The mobility of the sample can be determined from 

Equation (3.14). 

 The table below lists the measured mobility and sheet density for the two wafers 

that were used for experiments in this thesis: 

Wafer Depth of 2DEG Mobility at 4.2 K Carrier Density at 4.2 K 

020227B (MH2) 52 nm 464 000 cm2/Vs 3.86 x 1011 cm-2

020227C (MH3) 57 nm 396 000 cm2/Vs 4.53 x 1011 cm-2
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Figure 3.10 (a) Longitudinal magnetoresistance and Hall (transverse) resistance as a 
function of magnetic field B for wafer 020227B-MH2, measured at 4.2 K. Inset: Hall bar 
geometry used in these measurements. (b) Magnetoresistance oscillations as a function of 
1/B. Inset: A straight line fit to the peak positions in 1/B and peak number (squares) from 
which the sheet density can be calculated (see text).  



IV 

Triple Quantum Dots 

 

4.1 Overview 

 Semiconductor quantum dots are commonly referred to as artificial atoms: 

nanostructured devices where electrons are spatially confined and occupy discrete energy 

levels [43]. These artificial atoms are tunable, in that their shape, size, and electron 

density can be modified [44]. When two or more artificial atoms are allowed to interact, 

either by allowing electrons to tunnel between them or by a capacitive effect, artificial 

molecules are formed. For example, a system of two coupled quantum dots can be used 

to study how a molecular bond is formed as a function of electron tunneling between the 

individual artificial atoms, and an analog of the molecular binding energy can be 

measured [30,45]. 

 Semiconductor quantum dots are also proving to be promising systems for 

nanometer scale single-electron circuits [46]. One advantage of using semiconductor 

quantum dots is scalability: making quantum dots smaller only enhances their properties 

and reduces their, already low, power consumption. Numerous quantum dot single-

electron devices have already been demonstrated. Recent examples include a quantum 

dot electrometer [47] and a double quantum dot single-electron switch [48]. Quantum 

dots can be used as classical logic bits in future efficient, highly parallel nanoelectronic 

circuits. Furthermore, spins of localized electrons in quantum dots can serve as qubits for 

quantum information storage and processing [37]. In Section 2.5, we presented results on 

a double quantum dot device that can be tuned to the few-electron regime. Coupling two 
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quantum dots that contain just one electron each is the first step towards realizing coupled 

spin qubits. 

 There is great interest in investigating interactions between electrons in coupled 

dot systems. From a technological perspective, understanding and controlling electron 

interactions among multiple quantum dots is of fundamental importance and is required if 

a multiple quantum dot circuit element is to be built. In addition, electron-electron 

interaction is a central topic in condensed matter physics and can be explored with 

quantum dot systems. Over the last few years, coupled quantum dots in a linear 

arrangement have been studied thoroughly [31]. In this chapter, we present our research 

on triple quantum dots coupled in a (non-linear) ring geometry. Triple quantum dots are 

interesting in that they can be used as single-electron parametrons [49] or single-electron 

rectifiers [50,51] in nanometer scale electronic circuits, and are also important in 

quantum computing schemes, where they can be used as spin entanglers [52]. 

 The outline of this chapter is as follows. In Section 4.2, we derive the stability 

diagram of a triple dot system, showing the existence of quadruple points. In Section 4.3, 

we describe the charge rectification behavior of a triple dot when tuned to the Coulomb 

blockade regime. Finally, in Section 4.4, we present a symmetric, tunnel-coupled triple 

dot device and describe the device characteristics. We also present exact diagonalization 

results on a triple dot system containing just two electrons. 
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4.2 Stability Diagram 

 It is useful to consider the stability, or charging, diagram of a triple quantum dot. 

In this section, we derive the stability diagram for a triple quantum dot using a classical 

capacitive charging model, where it is assumed that the number of electrons on each dot 

is an integer. As we saw in Section 2.5 for the double dot case, inter-dot tunneling is the 

dominant effect and not inter-dot capacitive coupling. Coupled quantum dots prefer to 

share electrons where, even though the total number of electrons in the coupled dot 

system as a whole is quantized, the number of electrons on each dot individually is not an 

integer. Electron sharing tends to lower the ground state energy of the coupled dot 

system. However, a capacitive charging model still provides a useful description of the 

triple quantum dot, and allows the stability diagram to be mapped. We follow the 

derivation presented in Chapter 2 and Ref. [31]. The triple quantum dot system is shown 

in Figure 4.1. All three dots are tunnel-coupled and transport is measured through the left 

and right leads connected to dot 1 and dot 2. Each dot has its own capacitively coupled 

side gate.  

 From Chapter 2, Equation (2.13), the electrostatic energy for a discrete system of 

n conductors is 

 1

1 1 1 1 1

1 1 1
2 2 2

n n n n n

i i i ij j i ij j
i i j i j

U QV V C V Q C−

= = = = =

= = =∑ ∑∑ ∑∑ Q

)
)

 (4.1) 

Using Figure 4.1, we can determine the total charge on each dot by summing up the 

charge stored on the capacitors to obtain 

  (4.2) 
1 1 1 1 1 12 1 2 13 1 3

2 2 2 2 2 12 2 1 23 2 3

3 3 3 3 13 3 1 23 3 2

( ) ( ) ( ) (
( ) ( ) ( ) (
( ) ( ) ( )

R R G G

L L G G

G G

Q C V V C V V C V V C V V
Q C V V C V V C V V C V V
Q C V V C V V C V V

= − + − + − + −
= − + − + − + −
= − + − + −
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Figure 4.1 Circuit model of a triple quantum dot. Split boxes represent tunnel junctions. 
Each quantum dot (i = 1, 2, 3), with total capacitance Ci, has its own independent 
capacitively-coupled side gate, with gate voltage VGi and capacitance CGi. Cross-
capacitances are neglected. For the triple dot rectifier, C23 is a pure capacitor. 



where Vi is the electrostatic potential of dot i and all other variables are defined in 

Figure 4.1. Letting C1, C2, and C3 be the total capacitance of dot 1, 2 and 3, respectively, 

 
1 1 12

2 2 12

3 3 13 23

R G

L G

G

C C C C C
C C C C C
C C C C

13

23

= + + +
= + + +
= + +

 (4.3) 

Equation (4.2) can be written as 

  (4.4) 
1 1 1 1 12 13 1
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2
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⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥⎦ ⎣ ⎦

Now, we are interested only in the linear transport regime, where VL = VR = 0. Solving 

for V: 
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(4.5) 

Setting Q1 = -eN1, Q2 = -eN2, and Q3 = -eN3, where Ni is the number of electrons on dot i, 

we can solve for the electrostatic potential energy of the triple dot using Equation (4.1). 

We find that: 

 2 2 2
1 1 2 2 3 3 1 2 12 1 3 13 2 3 23 1 2 3

1 1 1
( , ,

2 2 2C C C C C C G GU E N E N E N N N E N N E N N E f V V V= + + + + + + )G (4.6) 

or, more compactly, 

 
3 3

2
1 2 3 1 2 3

1 , 2

1( , , ) ( , , )
2 Ci i i j Cij G G G

i i j j
U N N N E N N N E f V V V

= < =

= + +∑ ∑  (4.7) 

where Ni is the number of electrons in dot i. The first term represents the charging energy 

of the three individual dots, with 
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−
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Note that this is the usual charging energy for the uncoupled dot i, multiplied by a factor 

due to the coupling caused by dot j and dot k. The second term in Equation (4.7) 

represents the electrostatic coupling energy between dot i and dot j, in the presence of 

dot k, for the three pairs, given by 

 
2

2 2
1 2 3 12 13 23 1 23 2 13 3 12

( )
2

ij k ik jk
Cij

e C C C C
E

C C C C C C C C C C C C
+

=
− − − − 2  (4.9) 

Finally, f(VG1,VG2,VG3) is the electrostatic energy due to the induced charge by the 

capacitively-coupled side gates and is given by 
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(4.10) 

The electrochemical potential of a single dot equals the energy needed to add one 

electron to the dot, while keeping the number of electrons on the other dots constant: 

 
1 1 2 3 1 2 3 1 2 3

2 1 2 3 1 2 3 1 2 3

3 1 2 3 1 2 3 1 2 3
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 (4.11) 

This gives us: 
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The addition energy of a quantum dot is the energy required to add a single 

electron, ( 1) ( )dot dotN Nμ μ+ − , and is the same as the charging energy. From the 

equations above, we find that 

 
1 1 2 3 1 1 2 3 1

2 1 2 3 2 1 2 3 2

3 1 2 3 3 1 2 3 3

( 1, , ) ( , , )
( , 1, ) ( , , )
( , , 1) ( , , )

C

C

C

N N N N N N E
N N N N N N E
N N N N N N E

μ μ
μ μ
μ μ

+ − =
+ − =

+ − =
 (4.13) 

as expected. 

 As a simple test of our results, we can remove the inter-dot coupling from the 

system by setting C12 = C13 = C23 = 0. We find that 
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Substituting these values into Equation (4.6), we obtain 

 ( ) ( ) ( )2 2
1 1 1 2 2 2 3 3 3

1 22 2 2
G G G G G GC V eN C V eN C V eN

U
C C C
− −

= + +
2

3

−
 (4.16) 

which is the electrostatic energy of three independent dots, as expected. 

 For zero source-drain voltage across the triple dot, the electrochemical potential 

of the leads is pinned to the Fermi energy EF. Stable states of the triple quantum dot occur 

when the charge state (N1, N2, N3) takes on the largest possible integer values while 

maintaining an electrochemical potential less than EF for each dot. In these stable regions, 

the triple dot is in the Coulomb blockade and the charge state does not change. The triple 
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quantum dot stability diagram, which is a map of these stable states versus the three 

independent side gate voltages, is shown in Figure 4.2. Only where the stable states 

intersect can electrons tunnel between the dots, thereby changing the charge state. There 

exists a “quadruple point” where the four states (N1, N2, N3), (N1 + 1, N2, N3), 

(N1, N2 + 1, N3), and (N1, N2, N3 + 1) are degenerate. This is similar to a double dot 

system, which exhibits a triple point. Finally, we note that our circuit model approach 

was recently used by Gaudreau et al. to successful explain their results [53]. 

 

4.3 Triple Dot Charge Rectifier 

 Interactions between dots, caused by inter-dot tunneling or capacitive-coupling, 

give rise to changes in the conductance spectra and current-voltage characteristics of the 

system. It has been shown that Coulomb interaction between dots can give rise to ratchet 

effects [50]. The Coulomb blockade formalism [54], used to describe single-electron 

charging and transport through a multiple quantum dot system, can be used to predict 

these ratchet effects. Work with quantum dots displaying ratchet behavior has been 

explored both experimentally and theoretically [55,56]. In this section, we present an 

experimental realization of a triple quantum dot rectifier, or Coulomb blockade charging 

ratchet, as proposed in Ref. [50]. Here, three quantum dots are arranged in an asymmetric 

configuration such that a rectifying effect, characteristic of ratchet behavior [57], is 

observed. 

 The ratchet mechanism observed in this triple quantum dot is a bias-dependent 

current rectification [50], similar to the effect seen with a hybrid molecular electronic 

device [58]. As is typical for a ratchet, breaking of symmetry under inversion must be  
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Figure 4.2 First cell of the stability (charging) diagram of a triple quantum dot with 
nonzero inter-dot coupling. A hexagonal pattern for each pair of dots leads to a quadruple 
point in the 3-dimensional (VG1,VG2,VG3) space. 
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present, and is introduced here by placing an infinite barrier between dots 2 and 3. 

Because no tunneling takes place between dots 2 and 3, dot 3 is a quantum box that is 

tunnel-coupled with dot 1. Dot 2 and dot 3 are now only capacitively-coupled. That is, 

C23 in the circuit model of the triple dot presented in Figure 4.1 is now just a pure 

capacitor, and tunneling can only occur between dots 1 and 2 and dots 1 and 3. However, 

dots 2 and 3 interact capacitively. As we derived in Section 4.2, the stability diagram 

displays a quadruple point, analogous to the triple point of a double dot system, where 

four states are degenerate. These four states correspond to no excess electrons in the 

system or one excess electron on one of the three dots. Therefore, the triple dot can be 

tuned such that zero or only one excess electron is allowed in the device. This is crucial 

for the operation of a triple dot as a charging ratchet. At the quadruple point, a current 

can flow if an electron tunnels through the device, one at a time. For small source-drain 

voltage, while operating the device at the quadruple point, the energy of all four states is 

degenerate, and an electron can tunnel from the source to the drain through multiple 

tunneling events between all three dots. However, as the source-drain voltage is 

increased, the degeneracy of the quadruple point is broken, and if an electron tunnels into 

the quantum box, dot 3, it gets trapped there, and prohibits the flow of current. For 

reverse bias no trapping occurs. A schematic of this process is shown in Figure 4.3. The 

current through the triple dot is inversely proportional to the trapping ratio 3 1 1 3/γ γ← ← , 

where j iγ ←  is the rate of tunneling from dot i to dot j [50]. Using the orthodox theory of 

the Coulomb blockade, it can be shown that 

 13 /
3 1 1 3/ BU k Teγ γ Δ

← ← =  (4.17) 
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Figure 4.3 Schematic diagram showing the jamming process for the triple quantum dot 
charging ratchet. At the quadruple point, only these four degenerate states are accessible. 
A small forward bias breaks this degeneracy, and allows for an electron to be trapped in 
dot 3. Current can flow only if the electron follows the lower path. For reverse bias no 
trapping occurs. 
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Here, ΔU13 is the change in global free energy of the system when a tunneling event 

between dot 1 and dot 3 occurs, and is linearly proportional to the source-drain voltage 

VSD. We then have that for increased VSD, trapping dominates, and the current is 

rectified. For reverse biasing, no trapping occurs, and the current is not suppressed. The 

charge rectification in the triple dot system is analogous to a spin-Coulomb blockade 

rectifier using a double quantum dot [59]. Both of these devices act as molecular 

rectifiers for electrons, furthering the analogy between coupled quantum dots and 

artificial molecules. 

 

4.3.1 Monte Carlo Simulations 

 In section 4.2, we derived the electrostatic energy of a triple dot system from an 

equivalent circuit model, and used it to plot the stability diagram. By including a non-

zero voltage bias (i.e., , 0L RV V ≠ ), this model can also be used in a Monte Carlo 

simulation. We are interested in calculating the current-voltage characteristics of the 

triple dot to reveal the rectification caused by the asymmetric tunneling configuration.  

 The Monte Carlo simulation begins with the initializing of the charge state of the 

triple dot to (N1, N2, N3), depending on the side gate voltages. Then, a new charge state is 

determined after a single tunneling event occurs, and the charge state is updated. This 

process is repeated over a very large number of transitions. By keeping track of the 

number of electrons entering or leaving the leads, the current can be calculated. 

 Single-electron tunneling is allowed between neighboring dots (and leads). For 

example, an electron may tunnel to dot 1 from the left lead, or from dot 1 to dot 2. For a 

fully coupled triple dot, 10 such transitions are allowed. However, because we are 
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modeling the triple dot rectifier, we do not allow tunneling between dots 2 and 3, and 

therefore, there are only 8 transitions to take into account. Each transition will have 

associated with it a change in energy ΔU. The tunneling rate j iγ ←  from dot (or lead) i to 

dot (or lead) j is 

 2

1
1 exp( / )

j i
j i

t j i

U
e R U k T

γ ←
←

←

Δ⎛ ⎞
= −⎜ ⎟ − Δ⎝ ⎠ B

 (4.18) 

where Rt is the tunnel junction resistance (assumed to be equal for all junctions) and 

j iU ←Δ  is the associated change in energy for the transition. Using these tunneling rates, 

we can determine the most probable transition to occur, given the current charge state of 

(N1, N2, N3). A simple method to do this is to calculate, using Equation (4.18), all 8 

tunneling rates for the 8 possible tunneling events that may occur. We then divide the 

interval [0,1] into 8 subintervals, each proportional to one of the calculated rates, and 

finding in which subinterval a random number, uniformly distributed over [0,1], falls.  

 The Monte Carlo simulation is based on a classical charging model of electron 

transport in quantum dots. Several assumptions were made, including: (i) a continuous 

energy spectrum; (ii) a tunnel barrier traversal time of tunneling electrons that is 

negligible, or at least much less than the time between consecutive tunneling events; (iii) 

a well-defined integer number of electrons localized on each of the dots.  

 Results of the simulations are shown in Figure 4.4. Asymmetric I-V 

characteristics are obtained, with current rectification and negative differential resistance 

for positive VSD. A further discussion of these curves is given in the next section. 
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Figure 4.4 Monte Carlo simulations of the triple quantum dot I-V characteristics. Dot 3 is 
isolated from lead III, and a current is measured versus applied voltage VSD = VR-VL. 
Current suppression and negative differential resistance for VSD > 0 is found. Parameters 
used in the simulation are calculated from a self-consistent simulation of the full 3D 
structure of the device. Dashed lines are simulated at T = 450 mK and solid lines at 
T = 350 mK. From bottom for VSD > 0:  C1 = C2 = 210 aF, C3 = 50 aF; C1 = C2 =280 aF, 
C3 = 50 aF; C1 = C2 = 280 aF, C3 = 105 aF, C23 = 50 aF; C1 = C2 = 280 aF, C3 = 105 aF, 
C23 = 33 aF; Upper two curves are offset vertically by 0.25 pA for clarity. 
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4.3.2 Experimental Results 

 In this section, we present an experimental realization of a triple quantum dot 

charging ratchet. Figure 4.5 shows a scanning electron micrograph of the triple quantum 

dot charging ratchet. Fifteen independently tunable Cr:Au gates are used to define three 

coupled quantum dots in a GaAs/Al0.3Ga0.7As heterostructure containing a two-

dimensional electron gas located 57 nm below the surface. At 4K, the 2DEG sheet carrier 

density and mobility are ns = 4.5 x 1011 cm-2 and μ = 400 000 cm2 V-1s-1. The three dots 

are arranged in a ring structure, with tunneling possible between dots 1 and 2 and dots 1 

and 3. No exchange of electrons is allowed between dots 2 and 3 because of the infinite 

barrier resulting from the center metal gate. A finite-bias Coulomb blockade 

measurement of dot 2 is shown in Figure 4.6, from which we can deduce the total dot 

capacitance to be C2 ~ 310 aF. All measurements were performed in a 3He-system at the 

base temperature of 380 mK and measured electron temperature of 440 mK. 

We operate the triple dot device in the Coulomb blockade regime. We are able to 

tune the device to the quadruple point by (i) energizing all the gates to deplete the 

electron gas underneath to form three open quantum dots; (ii) independently tuning each 

dot to the tunneling regime and then to a Coulomb blockade peak; (iii) returning all 

fifteen gates to the values found in the previous step; (iv) pinching off the lead to dot 3, 

thereby forming a quantum box. We measure a dc current I from an applied source-drain 

voltage VSD across dots 1 and 2. 

Current-voltage (I-V) characteristics of the triple dot charging rectifier are shown 

in Figure 4.7, including polynomial interpolation of the data. The I-V characteristics 

show the rectification effect due to the charging of the quantum box, i.e. trapping an  
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Figure 4.5 Scanning electron micrograph of the triple quantum dot rectifier. The light 
areas are Cr:Au gates used to define the quantum dots. The locations of the dots are 
highlighted by circles. This geometry allows for tunneling between dots 1 and 2, and 
between dots 1 and 3. Dots 2 and 3 are capacitively-coupled, but no electrons may tunnel 
between these dots.   
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Figure 4.6 Differential conductance of dot 2 as a function of its side gate voltage and the 
dc bias. The diamonds are Coulomb blockaded regions from which we measure the total 
dot capacitance C2 ~ 310 aF. 
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electron in dot 3. The ratchet behavior expected is clearly observed: (i) for VSD < 0, 

current flows through the device; (ii) for VSD near zero, the current is symmetric; (iii) as 

VSD is made more positive, trapping in dot 3 dominates, and the current is rectified; (iv) 

as VSD is further increased, the rectification effect is overcome. Properties (i) and (iii) 

follow from Equation (4.17) directly. Property (ii) is a direct consequence of operating 

the triple dot at the quadruple point where the four allowed states of the system are 

degenerate. Property (iv) is a result of the high source-drain voltage pushing the system 

away from the quadruple point and allowing for more than one electron in the system at a 

given time. Negative resistance is also observed in the I-V characteristics, and is seen 

clearly in Figure 4.7 (b). 

Monte-Carlo simulations of the I-V characteristics of our device are shown in 

Figure 4.4. Junction resistances were used to fit the overall current range in the ohmic 

regime for negative bias. The parameters used in the Monte-Carlo simulations (the 

various dot capacitances) were derived from self-consistent simulations of the full three-

dimensional structure [60], which includes the wafer profile and the device surface gate 

pattern. These self-consistent simulations show that the capacitance of a single dot is 

approximately 280 aF, similar to the value of 310 aF extracted from the Coulomb 

blockade diamond of Figure 4.6. The resumption of current at the edge of the suppression 

region for positive VSD requires the addition of a second excess electron to the dot 

system. Analytically, the condition for this second electron entry gives a source-drain 

voltage threshold 
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where Ca is the capacitance sub-matrix between the three dots and CL is the capacitance 

between the left lead and the dot 1. This requires that we assume a smaller trapping dot in 

order to obtain a suppression region comparable to the experimental results. This is 

reasonable considering that the trapping dot is acting as a quantum box with only one 

lead.  

 The measured I-V characteristics in Figure 4.7 and the simulations in Figure 4.4 

show that the rectification effect is tunable, depending on the capacitive-coupling C23 

between dots 2 and 3. We are able to decrease C23 while maintaining approximately 

constant junction resistances by applying a more negative voltage on the center gate, 

while raising the voltage on the two opposite inter-dot quantum point contact gates. 

Figure 4.7 shows two I-V curves for our device under weak and strong capacitive-

coupling of dots 2 and 3. For larger C23, stronger rectification is observed, as predicted by 

the Monte-Carlo simulations. The simulations verify the features seen in the data, 

including the crossing of the two curves at VSD = 0. 
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Figure 4.7 (a) I-V characteristics of the triple quantum dot. The dotted (solid) line 
corresponds to weaker (stronger) coupling between dots 2 and 3, which gives rise to 
weaker (stronger) current suppression for forward bias. (b) Polynomial interpolation of 
the data in (a). I(V) is symmetric around VSD = 0 for both curves, which is a distinct 
feature of operating at the quadruple point. The region of negative differential resistance 
for VSD > 0 is clearly observed. 
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4.4 Three Quantum Dots in a Ring 

 In this section, we consider a fully symmetric tunnel-coupled triple quantum dot 

system. We are especially interested in triple quantum dots for quantum information 

processing. The exchange interaction, which is able to be tuned by controlling the tunnel-

coupling between a pair of quantum dots, has been suggested as a way to control qubit-

qubit interactions (two-qubit operations) in a quantum dot spin-qubit circuit [37]. To this 

end, double quantum dots, in both serial and parallel configurations [30,31,36,45,47,48], 

have been studied extensively. However, in a practical quantum computing architecture, 

there will be more than just two qubits present, and the effect a third qubit, for example, 

would have on a two-qubit system should be considered. A fully symmetric triple 

quantum dot allows such a system to be studied. By only energizing certain gates, a 

double dot system can be defined and studied. Then, the third dot can be turned on, and 

its effect on the double dot can be observed. In Section 4.4.1 a fully symmetric triple dot 

that we have fabricated is presented, along with several measurements in the Coulomb 

blockade regime. In Section 4.4.2, numerical techniques are used to study a two-electron 

triple dot. We find that in the triple dot, exchange coupling is far more complex than in 

the double dot case.  

 

4.4.1 Device Design and Characterization 

 Figure 4.8 shows a scanning electron micrograph of a symmetric triple quantum 

dot. Lithographically patterned Cr:Au gates are used to define three quantum dots in a 

GaAs/Al0.3Ga0.7As heterostructure containing a 2DEG located 52 nm below the surface. 

An ion-etched trench, 30 nm deep, is used to deplete the 2DEG in the center region. At  
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Figure 4.8 Scanning electron micrograph of a triple quantum dot. Light gray areas are 
tunable metal gates.  Dark center region is a 30 nm deep ion-etched trench. Dot locations 
are marked by the circles. 
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4K, the 2DEG sheet carrier density and mobility are ns = 3.8 x 1011 cm-2 and 

μ = 460 000 cm2 V-1s-1. The main difference between this device and the triple dot used 

as a rectifier [Figure 4.5], is that this geometry allows for tunnel-coupling between any 

two dots. 

 We operate the triple quantum dot device in the Coulomb blockade regime. 

Figure 4.9 shows the addition spectrum for the triple quantum dot measured through 

leads I and II while completely isolating dot 3 from lead III. All three inter-dot quantum 

point contacts are set to ~ 2e2/h, thereby having the triple dot act as one big dot, with the 

usual finite-bias Coulomb blockade diamonds observed. From the data, we find that the 

total capacitance of the single large composite dot is ~ 615 aF, corresponding to a 

charging energy of 0.26 meV. From separate measurements, we find the total capacitance 

for a single dot to be ~ 256 aF, corresponding to a charging energy of 0.625 meV. The 

total dot capacitance of a single dot of the triple dot rectifier, determined from finite-bias 

Coulomb blockade measurements shown in Figure 4.6, is 310 aF, corresponding to a 

charging energy of 0.515 meV. We note that due to lateral depletion of the ion-etched 

trench, the actual dot sizes in this triple dot are smaller than the lithographic sizes 

expected, resulting in smaller dots and larger charging energies. In fact, these dots can be 

tuned to the few-electron regime and in Chapter 5 we present experiments on a single dot 

tuned to the one- and two-electron regime. 

 Figure 4.10 (a) shows a scanning electron micrograph of the triple dot, where we 

have highlighted 11 out of the 15 gates that are energized in order to define a double 

quantum dot. In Figure 4.10 (b) we show the measured stability plot of this double 

quantum dot. Clear Coulomb blockade peaks are observed. As the double dot transitions  
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Figure 4.9 Numerical derivative (with respect to the horizontal axis) of the differential 
conductance of the triple dot acting as one large composite dot. All inter-dot quantum 
point contacts are set to ~ 2e2/h. Dot 3 is completely isolated from lead III. Differential 
conductance is measured as a function of all six side gates and the dc bias, VSD = VI - VII. 
The diamonds are Coulomb blockaded regions where current through the triple dot is 
zero. Lines parallel to the diamonds are excited states of the triple quantum dot. 
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Figure 4.10 (a) Scanning electron micrograph showing the 11 gates (highlighted) that are 
energized in order to define a double quantum dot. The side gate voltages used in 
measuring the stability diagram are labeled as VG2 and VG3. (b) Stability diagram of the 
double dot shown in part (a). In the lower left region, weaker coupling due to more 
negative voltages placed on VG2 and VG3 results in peak splitting and the appearance of 
triple points. In the upper right region, the side gate voltages are less negative, allowing 
for stronger coupling between the two dots and straight diagonal Coulomb blockade lines 
are observed. In this region, the double dot has merged into one large composite dot. 



from weak coupling to strong coupling, the Coulomb blockade peaks transition from  

curved lines displaying triple points to straight diagonal lines. 

 

4.4.2 Density Functional and Exact Diagonalization Calculations 

 In this section, we present numerical calculations of the singlet-triplet splitting for 

a two electron triple quantum dot. This work was performed with Dr. Michael Stopa at 

Harvard University, using the SETE software package that he developed [60,61]. 

 The spin state of electrons in multiple quantum dot assemblies formed in two 

dimensional electron gas semiconductor heterostructures is determined by exchange 

interactions between the electrons and not, generally, by the much smaller magnetic 

dipole interactions between the spins. In the simplest case of two electrons in two dots 

(artificial molecular hydrogen) competition between exchange, which favors spin 

alignment (spin triplet), and tunneling, which delocalizes the electrons and tends [62] to 

favor spin anti-alignment (spin singlet) can be modulated by a magnetic field and is 

sensitive to the precise geometric nature of the tunnel barrier separating the two dots [63]. 

The exchange splitting J is defined as the energy difference between the ground state 

triplet and the ground state singlet and is crucial to the implementation of various 

schemes of quantum computation [37]. 

 Numerous recent calculations, motivated by the quantum computation 

implications of manipulating the exchange interaction, have demonstrated that for double 

dots, the exchange splitting J(B) as a function of magnetic field is positive for B = 0 but 

can cross to negative (triplet ground state) as B increases before finally saturating to zero 

as the magnetic field effectively isolates the two dots  [61,62,64]. For the triple dot we 
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show below that J(B) oscillates between positive and negative several times before 

decaying to zero. This suggests a competition between the exchange integral and the 

tunnel coupling that is mediated by the evolving single particle states which are in turn 

influenced by the magnetic flux that threads the triple dot device. 

 We study the spin state of the symmetric, tunnel-coupled triple quantum dot 

presented in the previous section as a function of electron number N, magnetic field B, 

and the various gate voltages and gate geometries controlling the height and shape of the 

barriers between the dots. We are particularly interested in the two-electron (N = 2) triple 

dot system because of its relevance to quantum computation [37]. We study the triple 

quantum dot in two regimes with two different methods. First, we consider the case of a 

large number of electrons using a mean-field, density functional theory calculation [60]. 

This calculation allows for a self-consistent solution that incorporates the realistic device 

parameters. The triple dot stability diagram, derived in Section 4.2, identifies, in 

particular, the N = 20 case as similar to the N = 2 case. Specifically, since 18 electrons 

constitute a filled shell for the triple dot, N = 20 has two valence electrons. We first 

examine the structure of the magneto-spectrum for the “filled-shell” N = 18 case. It is 

then of interest to study how the 18 core electrons influence the electronic structure of 

two valence electrons when we increase N to 20. 

 The mean-field, density functional theory approach breaks down in the few-

electron regime (small electron number N), where electron-electron correlation is 

significant. Therefore, to investigate the N = 2 triple quantum dot, we extend the exact 

diagonalization method used to study N = 2 double quantum dots [61] to the three dot 

case. The exact diagonalization calculation employs the density functional theory results 

88 



(the Kohn-Sham states) as a basis only. This method incorporates the full geometric 

fidelity of the structure while also including the full effects of many-body correlation. 

 We begin with a calculation of the electronic structure of the triple dot device. 

Figure 4.11 shows a self-consistent potential profile of the triple dot device performed 

with density functional theory [60]. We consider the case where the three dots are as 

nearly “balanced” as possible. This is straightforward for N = 18, where 6 electrons 

occupy each dot and a spectral gap exists to the next (empty) state. For N = 20, however, 

it is necessary to set the gate voltages carefully so as to maintain a charge of 20/3 in each 

dot. 

 In Figure 4.12 we show the calculated Kohn-Sham energy levels for a single spin 

species (“spin up”) for a triple dot with N = 18 and N = 20 as a function of magnetic 

field. Note that the dot is strongly isolated from the leads and that the Fermi surface EF of 

the N = 18 (N = 20) triple dot lies between the 9th (10th) and the 10th (11th) levels. The 

resemblance to the Fock-Darwin spectrum [65] is evident. The spectrum is predominantly 

that of three isolated dots, each approximately parabolic, nearly degenerate except for a 

tunnel splitting. The tunnel coupling between the dots is small and is of the order of the 

splitting between the sets of three states at B = 0. It is interesting that there is no evident 

effect of the flux threading the dot ring in these results. For N = 20 the spectrum is quite 

different due to the location of the dot Fermi level within a group of three (six, including 

spin) levels. The nearly degenerate levels are influenced by small changes in B which 

further affects the occupancies. These shifts in occupancy thereupon change the self-

consistent potential. So, while the gates are set at B = 0 to “balance” the three dots, the 

magnetic field breaks this symmetry and produces charge redistribution. An additional  
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Figure 4.11 Potential contours of the triple quantum dot calculated from a self-consistent 
simulation of the full 3D structure of the device shown in Figure 4.8. 
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Figure 4.12 Kohn-Sham energy levels for triple dot (spin up) with (a) N = 18 electrons 
and (b) N = 20 electrons. For N = 18, each electron has a filled Fock-Darwin “shell” of 6 
electrons and so the Fermi level is in a gap. For N = 20, fluctuations of the self-consistent 
structure occur as B slightly modifies the Fermi surface states. Points calculated every 
0.1 T. 



effect, which is an anomaly of mean field theory, is that levels tend to stick together 

(unless there is a gap at the Fermi surface) so that fractional occupancy can produce a 

charge distribution that best minimizes the electrostatic energy. 

 We now focus on the N = 2 triple dot and examine the exchange energies as a 

function of magnetic field B. We maintain the gate voltages such that the triple dot is 

balanced and 2/3 of an electron is resident in each dot. In order to reduce the electron 

number to N = 2 it is necessary to make the surface gate voltages considerably more 

negative and shrink the area of the dots. The Kohn-Sham level structure for the N = 2 

triple dot, shown in Figure 4.13 (a), reflects this smaller size, as is evident by the spacing 

between the lowest three states and the next six states (s and p, respectively, in the Fock-

Darwin spectrum) being greater than in the larger N cases. 

 In order to understand the level structure, it is instructive to diagonalize the single 

particle Hamiltonian for the triple dot in the tight-binding basis. We assume that the dots 

are identical with energy ε0 and connected with tunneling coefficient t, as shown in 

Figure 4.13 (b). The Hamiltonian is 

 
0

0

0

t t
H t t

t t

ε
ε

ε

− −⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

 (4.20) 

The eigenvalues of H are E0 = ε0 - 2t and E1 = ε0 + t, the latter of which is doubly 

degenerate. The (un-normalized) eigenfunctions, shown in Figure 4.13 (b), are: (1,1,1), 

(1,-1/2,-1/2) and (0,1,-1). The splitting between the lowest level in Figure 4.13 (a) and the 

ensuing degenerate pair is 3t and is approximately 0.4 meV. 

 As the magnetic field is turned on, level oscillations that are not apparent in the 

large N cases [Figure 4.12] begin to occur. We attribute these fluctuations, most notably  
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Figure 4.13 (a) Kohn-Sham energy levels for the N = 2 triple dot. Splitting, at B = 0, 
between first level and second pair is 3t. Note that level 2 oscillates between levels 1 and 
3 with the same behavior as the oscillation of J(B) seen in Figure 4.14 (a). (b) Schematic 
of tight-binding model of three dots in a ring with eigenfunctions (1,1,1), (1,-1/2,-1/2) 
and (0,1,-1). 
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the oscillation of level 2 back and forth between levels 1 and 3, to the addition of flux 

quanta through the ring formed by the three dots. A major consequence of this variation 

is the behavior of the singlet-triplet splitting J(B) for the N = 2 triple dot. The singlet-

triplet splitting J(B) is calculated from an exact diagonalization calculation which uses 

the Kohn-Sham states of Figure 4.13 (a) as a basis. Figure 4.14 (a) shows that J(B) begins 

positive and then changes back and forth between positive and negative several times. 

This is strikingly different from the double dot case, whose representative calculations of 

J(B) are illustrated in Fig. 4.14 (b). For N = 2 double dots, the singlet nature of the B = 0 

ground state gives way to a transition to a triplet ground state at finite B [61,62,64]. 

Physically, spin-alignment (triplet) is favored by the exchange integral, as in the case of 

Hund’s rules for atoms, and spin anti-alignment (singlet) is favored by tunneling which 

permits double-occupancy through delocalization. The action of the magnetic field is to 

compress the wavefunction overlap in the saddle point between the two dots. This 

enhanced overlap increases exchange (integral) while leaving the tunneling coefficient 

essentially unaffected. This therefore constitutes an explanation of the double dot B-

dependent crossover of J. For triple dots, the behavior of J(B) is more complicated. 

 A basic explanation of the fluctuating triple dot J(B) is as follows. The lowest 

state in Figure 4.13 (a) can contain two electrons, due to spin degeneracy. When the 

second orbital descends to near degeneracy with the first (at B ~ 0.6 T, for example), the 

additional orbital degeneracy allows spin alignment, in the form of Hund’s rule. 

Therefore in these regimes the triplet is favored. While a more thorough explanation in 

terms of the competition between delocalization and exchange is desired, it is clear that  

the driving mechanism for J(B) oscillation is the influence that the threaded magnetic  
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Figure 4.14 Singlet-triplet splitting J(B) as a function of magnetic field for (a) triple and 
(b) double dot calculated from full exact diagonalization method for N = 2. Note that, in 
contrast to the double dot case (plotted here for a typical variety of gate patterns and 
tunnel coupling strengths) J(B) for the triple dot exhibits several oscillations while it is 
damped by increasing localization of the eigenstates within the individual dots by the 
magnetic field. 



field exerts on the evolving basis states. 

 In conclusion, we have used density functional theory and exact diagonalization, 

formulated on a density functional basis, to investigate the exchange energy in a triple 

quantum dot. We show that the effective single particle spectrum (the Kohn-Sham levels) 

for many electrons (~20) evolves, as a function of applied magnetic field B, in the form 

of a triply degenerate (six-fold degenerate if spin is included) Fock-Darwin spectrum. 

The single particle spectrum is not influenced by the threading magnetic field. We have 

also shown an oscillatory structure to J(B) for the N = 2 triple quantum dot which 

contrasts strikingly with that of the double dot case. 

 

4.5 Conclusions 

Triple quantum dots are new types of artificial molecules, compared to the 

previously studied linear coupled quantum dots. In this chapter, we have presented two 

different configurations of a triple quantum dot system. We have shown that an 

asymmetric configuration results in a bias-dependent current suppression, making a triple 

dot a promising candidate as a single-electron rectifier in future single-electron tunneling 

device circuits. Furthermore, triple dots can be used as building blocks of a two 

dimensional triangular array of qubits for solid state quantum computation. We have also 

presented numerical calculations that show that the triple dot exchange interaction gives 

rise to a quasi-periodic fluctuation of J with magnetic field, which we attribute to periodic 

variations of the basis states in response to changing flux quanta threading the triple dot. 

 An interesting topic that may be explored in future experiments on triple quantum 

dots is that of geometric spin frustration [66]. Certain lattice geometries may result in 
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frustration of the spin-spin interactions. For nearest neighbor antiferromagnetic coupling 

of spins in the triple dot molecule, the system is unable to satisfy all pairwise interactions. 

The ground state energy of the triple dot molecule is the same for six different spin 

configurations, where two of the three spins must point in the same direction, resulting in 

geometric spin frustration. Typically, it is difficult to study geometric spin frustration 

because defects and three-dimensional inter-coupling normally act to relieve the 

frustration in real materials. 

 Artificially engineered two-dimensional structures, such as the triple dot of 

Figure 4.8, will provide ideal systems in which to study geometric spin frustration. In the 

triple dot system, exchange interactions can be described by an effective spin 

Hamiltonian . S( 12 13 23H J J J= − ⋅ + ⋅ + ⋅1 2 1 3 2 3S S S S S S ) i is the spin on dot i and J12, J13, 

and J23 are negative. The Cr:Au gates of the three inter-dot quantum point contacts are 

fully tunable, and allow control over each individual exchange coupling Jij. Therefore, we 

can perform transport measurements of a frustrated triple dot (J12 = J13 = J23) and then 

relieve the frustration by tuning one exchange coupling to zero. Aside from conventional 

conductance measurements, including spin blockade spectroscopy using spin polarized 

leads [67], we believe measurements of the thermopower of the triple dot molecule may 

reveal spin frustration characteristics [68]. Thermopower of quantum dots in the 

Coulomb blockade regime has been studied theoretically [69] and has already been used 

as an effective spectroscopic tool [70]. 
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V 

MULTI-PEAK KONDO EFFECT 

 

5.1 Overview 

 Semiconductor quantum dots are tunable systems and can serve as probes of 

strongly correlated electron behavior. In this chapter, we use a few-electron quantum dot 

to study the Kondo Effect [71]. The Kondo effect is one of the most fascinating many-

body problems in condensed matter physics [72]. We present results of transport 

measurements through a single quantum dot occupied by one or two electrons (N = 1 or 

N = 2) which, in both cases, exhibit sharp peaks in the differential conductance beyond 

the linear regime. Non-linear measurements of transport through Coulomb blockaded 

quantum dots have become a standard method for investigating the excited states of dot 

electrons. Frequently-observed inelastic co-tunneling lines in Coulomb diamonds [73] are 

a signature of a virtual exchange of electrons with two Fermi surfaces (the leads) which 

produce a preferential electron flow from source to drain. This phenomenon is, at least, 

the lowest order fundamental process from which arises the Kondo effect. 

 Analysis of the temperature dependence and the peak splitting due to a magnetic 

field indicate that the observed co-tunneling lines in our measurements represent the fully 

coherent Kondo effect. We analyze the revealed level spacing in terms of a disordered, 

quasi-1D structure of the dot and indicate that the unusually low-energy excitations are 

an expected characteristic of such systems. Similar features in transport through 1D 

nanotube devices have already been observed [74]. 
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 In Section 5.2 we give a brief review of the Kondo effect in quantum dots. In 

Section 5.3 we describe the few-electron quantum dot device, including the integrated 

quantum point contact charge sensor. The charge sensor allows us to determine the 

absolute charge state (N = 1 or N = 2) of the quantum dot. Section 5.4 presents the non-

linear transport measurements showing the Kondo resonances. 

 

5.2 The Kondo Effect 

 The Kondo effect arises when the degenerate or nearly degenerate states of an 

isolated electron system, which are not coupled through any direct interaction, acquire an 

effective coupling, and thereby hybridize, via the virtual exchange of electrons with one 

or more neighboring Fermi surfaces [72]. The simplicity of the conditions demanded by 

the Kondo effect contributes to its ubiquity in electron systems as well as to the variety of 

phenomena that are distinct manifestations of Kondo physics. The initial experimental 

puzzle which required the Kondo effect for its elucidation concerned the diverging low 

temperature resistivity of metals doped, intentionally or otherwise, with 3d transition 

metal impurities possessing a local magnetic moment [75]. The physics of the Kondo 

effect was also able to be applied to resonant transport through tunnel barriers with 

magnetic impurities [76-78]. A quantum dot, with non-zero spin, behaves essentially as a 

localized magnetic impurity coupling two Fermi seas (the source and drain leads). By 

contrast to the case of impurities in metal, however, the observation of Kondo physics in 

semiconductor quantum dots, which are artificial atoms whose coupling, spin and energy 

parameters are subject to delicate control [44], dramatically widened the classes of 

Kondo behavior which could be observed and explained [79-86]. 
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 The Anderson model [87] can be used to describe the quantum dot as a single 

magnetic impurity, and is schematically shown in Figure 5.1. The quantum dot has a 

single spin-degenerate state with energy ε0 that is less than the Fermi energy EF of the 

leads. This state is occupied by a single electron with tunneling rate Γ/h. The large 

charging energy EC prevents a second electron from entering the dot. Typically, the 

quantum dot is in Coulomb blockade and no transfer of electrons can occur. However, if 

coupling to the leads is large, higher-order co-tunneling events can take place. Such 

virtual tunneling events may lead to a spin flip, as shown in Figure 5.1. The coherent 

superposition of these tunneling events results in an average quantum dot spin of zero, 

even though the quantum dot contains a single electron. The spin of the single localized 

electron in the quantum dot is effectively screened by the electrons in the leads. Stated 

differently, the electron in the quantum dot and the electrons in the leads form a many-

body spin-singlet state. This spin-singlet couples the source to the drain and gives rise to 

a narrow peak at EF in the density of states of the quantum dot. This leads to a 

conductance resonance for the quantum dot, which is observed as a peak in the 

differential conductance dI/dVSD and as enhanced conductance within a Coulomb 

blockade valley. Note that, in contrast to the increased resistivity due to the Kondo effect 

for impurities in metals, the Kondo effect in quantum dots leads to an increase in 

conductance. 

 The characteristic energy scale of the Kondo effect kBTK is the binding energy of 

the many-body spin-singlet state that is formed [72]. Written in terms of the parameters 

introduced in the Anderson model, the Kondo temperature TK is [88,89] 

100 



(a) Initial State

(b) Virtual State

(c) Final State

EC
µS µD

ε0Γ

EC
µS µD

ε0Γ

EC
µS µD

ε0Γ

101

Figure 5.1 Schematic diagram of the Anderson impurity model showing the energy profile of a quantum 
dot connected to source and drain leads. The quantum dot has a single spin-degenerate state with energy ε0 
that is less than the Fermi energy EF of the leads. The charging energy is EC. The quantum dot density of 
states is shown in gray. Resonances at the discrete energy states are broadened by Γ. A narrow peak at EF 
develops due to the Kondo effect. A virtual spin-flip tunnel process is shown: (a) (initial state) the quantum 
dot contains a spin up electron; (b) (virtual state) the electron may tunnel out to the drain within a time 
∆t ~ h/EC; (c) (final state) a spin down electron tunnels in from the source. 
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The Kondo temperature varies across the Coulomb valley. At the center of the valley, 

with ε0 = -EC/2, the Kondo temperature is a minimum, given by 
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Equation (5.1) can be rewritten as [90] 
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 (5.3) 

where Δε0 = ε0 + EC/2 is the energy difference from the center of the valley. In terms of 

gate voltage VG, Δε0 = αe(VG-VG0), where α = CG/CΣ is the “capacitive lever arm” (see 

Section 2.4) and VG0 is the value of the gate voltage at the center of the valley. Therefore, 

the Kondo temperature TK varies as exp(VG
2). 

 In a parallel magnetic field B||, the spin degeneracy of the single-particle state is 

lifted by Zeeman splitting, and the single state at ε0 splits into two states separated by the 

Zeeman energy gμBBB||, where g is the Lande g factor and μB is the Bohr magneton. The 

Kondo peak in the density of states also splits, and can be observed as two peaks in 

dI/dVSD located at eVSD = ± gμBB||B  [91,92]. 

 

5.3 Realization of a One and Two Electron Quantum Dot 

 Figure 5.2 (a) is a scanning electron micrograph of the quantum dot device. A 

single quantum dot is defined using six Cr:Au surface gates (highlighted in the figure) 

and a 30 nm deep ion-etched trench on a modulation doped GaAs/Al0.3Ga0.7As  
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Figure 5.2 (a) Scanning electron micrograph of the quantum dot device. Light gray 
regions are Cr:Au surface gates. Only the highlighted gates are used in these 
measurements. The center region is a 30 nm deep ion-etched trench. (b) Coulomb 
blockade oscillations as a function of side gate voltage VG1. (c) Gray-scale plot of the 
differential conductance dI/dVSD. Light regions correspond to enhanced conductance. 



heterostructure containing a two-dimensional electron gas 52 nm below the surface. Low 

temperature Hall measurements determined the 2DEG sheet density ns = 3.8 × 1011 cm−2 

and mobility μ = 460 000 cm2V−1s−1. 

 The device was cooled in a 3He/4He dilution refrigerator, and the differential 

conductance through the quantum dot was measured between leads I and II by adding a 

small a.c. excitation voltage to a d.c. source-drain bias VSD and recording the current with 

a current preamplifier and lock-in amplifier. A large negative voltage was placed on 

gate G6 to suppress any tunneling through the third terminal. All measurements, except 

those in Figure 5.4 (a), were performed at the base temperature of 40 mK. Figures 5.2 (b) 

and 5.2 (c) show typical Coulomb blockade conductance oscillations and Coulomb 

diamonds for the quantum dot in the few-electron regime. Our geometry allows us to tune 

the number of electrons in the quantum dot from approximately 20 electrons down to 

zero electrons. Furthermore, we observe clear signatures of a shell structure [93] in the 

quantum dot, including an alternation in the Coulomb blockade peak heights for the first 

few electrons entering the dot, different areas for each Coulomb diamond, and odd-even 

signatures at zero source-drain bias. 

By placing a large negative voltage on both gates G5 and G6, we can reduce the 

size of the quantum dot. Self-consistent electronic structure simulations [60] of the full 

three-dimensional structure of our dot, including wafer profile, donor layer disorder, and 

the device surface gate pattern, show that the potential profile for the 2DEG electrons can 

become long and narrow [Figure 5.3 (a)]. Our device has a nearby gate G7 that forms a 

quantum point contact against the center etched trench. Measuring the conductance 

through leads I and III, we find that the quantum point contact shows clear conductance  
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Figure 5.3 (a) Coulomb blockade conductance of the quantum dot, when tuned down to 
the one and two electron regime. Inset: Potential profile from a self-consistent electronic 
structure simulation showing the resulting quasi-1D shape of the quantum dot. The center 
of the dot is at ~ -4 meV relative to the Fermi level of the 2DEG, with QPC barrier 
heights of ~ 4 meV. (b) Simultaneously measured differential conductance dIQPC/dVG1 
through a nearby QPC biased below the first conductance plateau. The QPC acts as a 
charge sensor, showing a drop in dIQPC/dVG1 as the number of electrons on the dot 
changes. Absence of additional dips reveals the absolute number of electrons on the dot, 
starting at N = 0. Inset: quantized conductance of the QPC.  
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plateaus, as shown in the inset to Figure 5.3 (b). Biasing the point contact below the first 

conductance plateau, where the slope is the steepest, allows it to act as a very sensitive 

charge sensor for the quantum dot [94]. As the quantum dot goes through a Coulomb 

blockade peak, a sharp decrease in the point contact conductance dIQPC/dVG1 is observed. 

Figures 5.3 (a) and 5.3 (b) show the conductance through the quantum dot and 

dIQPC/dVG1 measured simultaneously. The absence of further Coulomb blockade 

oscillations in the quantum dot conductance or dips in the point contact conductance as 

VG1 is made more negative indicates that the quantum dot is empty of electrons. Using 

the quantum point contact charge sensor, we are able to identify the N = 1 and N = 2 

transport Coulomb diamonds in which we observe features that, as we shall show, are 

manifestations of the Kondo effect. In the rest of the measurements presented here, G7 is 

turned off and lead III is left floating. 

In most quantum dots, as the size is reduced using the side gates, the large 

negative voltage applied to these gates makes the tunnel barriers to the source and drain 

more opaque. As a result, transport in the few-electron regime, in particular, is difficult to 

measure. Here, our quasi-1D dot geometry allows us to maintain strong coupling to the 

leads even in the one and two electron regime, as signified by the large (> 0.2 e2/h) 

Coulomb blockade peaks. In addition, we employed the technique of cooling down the 

device with the gates at positive bias [95]. This effectively lowers the ionized donor 

concentration Nion in the vicinity of the dot and our simulations show that the lowered 

Nion enhances the spread and lead-connectivity of the low lying wave functions. 

In Figure 5.4 we plot the temperature dependence and in-plane magnetic field 

dependence of the conductance for the one and two electron dot. Our N = 1 quantum dot  
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Figure 5.4 (a) Conductance versus side gate voltage VG1 for different mixing chamber 
temperatures. (b) Differential conductance as a function of source-drain voltage and in-
plane magnetic field (with VG1 tuned to the center of the N = 1 valley) showing the 
Kondo peak splitting. Dashed lines are linear fits of the peaks to ± gµBB

||
. 



is an experimental realization of the canonical example of the Kondo effect with just a 

single isolated spin. From Equation (5.1), we see that the Kondo temperature TK depends 

sensitively on the coupling to the leads. Figure 5.4 (a) shows that with decreasing 

temperature, the conductance in the single electron valley increases, whereas the trend is 

reversed for the two electron valley, as expected. Furthermore, we observe that the 

conductance peaks shift toward the center of the N = 1 valley as the temperature is 

lowered, in agreement with theoretical predictions for the Kondo effect [89,91,92]. 

Applying a parallel magnetic field B|| allows us to measure the Kondo peak splitting 

[91,92]. Figure 5.4 (b) shows the differential conductance as a function of VSD and B|| at 

the center of the N = 1 valley. We find that above a critical value of in-plane magnetic 

field BC = 1.45 T, the Kondo peak begins to split into two peaks located at 

eVSD = ± gμBBB||. This splitting allows us to determine the g factor g = 0.32 for our 

quantum dot. The value of the critical magnetic field BC required for Kondo peak 

splitting gives us an estimate of the Kondo energy scale kBTK ~ gμBBC B ~ 27 μeV. A 

critical magnetic field below which no splitting occurs is predicted by theory [96], and 

has been measured in other lateral quantum dots [90,97,98]. 

 

5.4 Multi-Peak Kondo Effect 

 Figure 5.5 shows the differential conductance through the quantum dot as a 

function of VSD and VG1 in the one and two electron regime. Absence of diamonds at 

high bias and more negative side gate voltage gives further evidence of the absolute 

occupancy of the dot (N = 0, 1 and 2). The transport spectroscopy shown here has many 

interesting features. We find several horizontal lines within the Coulomb diamonds.  
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Figure 5.5 Differential conductance as a function of source-drain voltage and side gate 
voltage VG1. Left region is N = 0, center diamond is N = 1, and right diamond is N = 2. 
Sharp horizontal conductance peaks are observed within the N = 1 and N = 2 diamonds. 
Also observed are regions of negative differential conductance above and below the 
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These features form peaks in dI/dVSD rather than steps. This is strong evidence of Kondo 

behavior since the Kondo effect relies on tunnel coupling of two (possibly degenerate) 

states with a Fermi surface or surfaces such that, within the natural level width, the levels 

have access to both occupied and unoccupied states, i.e. the levels are pinned to the Fermi 

surface(s). A multi-peak Kondo effect where one Fermi surface is pinned to an excited 

state (and the other to the ground state) has been predicted theoretically [99,100]. The 

conductance peaks in Figure 5.4 are found to be parallel and independent of VG1, as 

expected [99,100]. To observe multiple Kondo peaks, the Kondo energy kBTK should be 

comparable to or larger than VSD. In our quantum dot, the Kondo energy is expected to be 

enhanced by the presence of multiple levels in the quantum dot. With kBTK of 27 μeV as 

our single level Kondo energy, and a single additional level at 145 μeV, we obtain using 

Equation (3) in Ref. [99] an enhanced kBTK equal to 300 μeV. 

We begin a closer analysis of Figure 5.5 with the N = 2 diamond, corresponding 

to a Helium artificial atom. We observe four horizontal peaks in the differential 

conductance, symmetrically situated, with two peaks above and two peaks below 

VSD = 0. Horizontal features within a Coulomb blockade diamond at a source-drain bias 

VSD = Δ/e are associated with transport through an excited state of energy Δ. The four 

horizontal peaks occur at Δ1 = ± 105 μeV and Δ2 = ± 285 μeV. We infer that the ground 

state for the N = 2 quantum dot (with B|| = 0) is a singlet, because no zero-bias Kondo 

peak is observed. While the singlet has no Kondo effect, the triplet S = 1 typically has a 

lower TK than a spin-½ system. However, for an even N system it has been demonstrated 

[85] that near a degeneracy of the singlet and triplet (induced by, say, a magnetic field) a 

sharp increase of the Kondo temperature results. We therefore propose that the peaks at 
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± 105 μeV and ± 285 μeV result from the Kondo coupling of the first and second excited-

state triplet with the ground state singlet. In other words, the singlet-triplet degeneracy is 

brought about modulo the source-drain bias. 

In the N = 1 diamond of Figure 5.5, we observe several peaks. In addition to a 

zero-bias conductance peak, associated with the single-electron Kondo effect, we find 

additional peaks spaced by roughly 145 μeV. These peaks correspond to the excitation 

spectrum of the quantum dot. The fabrication of a single electron dot still appreciably 

connected to the leads and possessing an excitation spectrum as small as this is non-

trivial. The nominal 2DEG density in this heterostructure is ns = 3.8 × 1011 cm−2. Our 

modeling shows that with this density of ionized donors and the given geometry of the 

gates, the gate voltages required to deplete the dot down to one or two electrons would 

result in a deep, isolated potential depression with a level spacing greater than 1 meV. In 

these experiments, we have artificially reduced the ionized donor density in the region of 

the dot by cooling the device down with the gates energized at positive bias. Although we 

cannot measure the resultant local ion density directly, calculating the electronic structure 

over a range of 1.5 × 1011 cm-2 ≥ ns ≥ 0.25 × 1011 cm-2 results in a level spacing from 

500 μeV down to around 200 μeV. The levels are affected by the particular gate voltages 

and also the addition of discrete donors (as opposed to jellium) to the calculation. While 

the donor distribution cannot be known for every device with precision, the success of the 

model in obtaining consistent excitation energies, even in such a low density regime, is 

significant. We note finally that recent measurements of nonlinear transport in nanowires 

exhibit comparable “Kondo stripes” in the Coulomb blockade diamond and a similar 

explanation has been considered [101]. 
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Figure 5.6 (a) shows the differential conductance through the quantum dot as a 

function of VSD and VG1 at a parallel magnetic field of 3.2 T and 5.2 T. We find that, in 

addition to the splitting at zero-bias, splitting is also found at non-zero bias, roughly at 

the locations of the peaks at zero magnetic field. Further indication that these peaks are 

caused by the Kondo effect is found from the peak splitting behavior. It has been 

predicted [102] that the peak splitting ΔK, defined as half the separation between the 

positions of the positive and negative peaks, is proportional to log(1/TK). The Kondo 

temperature TK varies as exp(VG
2), where VG is the side gate voltage, as shown in 

Equation (5.3). Therefore, the peak splitting ΔK is expected to vary quadratically with 

gate voltage. Figure 5.6 (b) shows the peak splitting ΔK as a function of the side gate 

voltage for three representative peaks at zero, positive, and negative source-drain bias and 

BB|| = 3.2 T. We find that the peak splitting does indeed vary quadratically with gate 

voltage at both zero and finite source-drain bias. The fact that each parabola has a 

different curvature can be explained by the difference in the energy and tunneling rates of 

the different quantum dot states. 

Our measurements on a small quasi-1D lateral quantum dot strongly coupled to its 

leads revealed a multi-peak Kondo effect in the one and two electron regime. Electronic 

structure simulations for our dot, which include the full 3D structure of the device, show 

that the shape of the quantum dot gives rise to low-energy excited states. These excited 

states are coupled to the leads via a Kondo resonance, giving rise to the observed Kondo 

stripes within the Coulomb blockade diamonds. 
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Figure 5.6 (a) Differential conductance as a function of source-drain voltage and side 
gate voltage VG1 with (left) B|| = 3.2 T and (right) B|| = 5.2 T. Light regions correspond to 
                                          K, and parabolic fits, for 3 representative 
peaks at 3.2 T. 
enhanced conductance. (b) Peak splitting ∆



VI 

Ge/Si HETEROSTRUCTURE NANOWIRES 

 

6.1 Overview 

 Semiconductor nanowires can serve as the building blocks of nanoelectronic 

circuits due to their ability to act as both interconnects and active devices [103]. The 

controlled growth and reduced dimensions of nanowires has allowed for a bottom-up 

approach [103] of assembling nanoscale electronic circuits. The nanowires studied in this 

thesis are Ge/Si core/shell heterostructure nanowires. Our interests in germanium and 

silicon stem from their increased technological importance [104]. Band structure 

engineering of nanowire heterostructures allow for low-dimensional carrier gases with 

enhanced mobility, low scattering, and reproducible contacts. 

 A Ge/Si nanowire contacted with aluminum electrodes allows for transport 

studies in a completely new regime: at low temperature, the aluminum superconducts and 

induces superconductivity in the nanowire through a proximity effect. Our goal is to 

investigate proximity-induced superconductivity in Ge/Si nanowires in order to provide 

new insights into some open problems in mesoscopic superconductivity. 

 In Section 6.2, we introduce the unique Ge/Si radial heterostructure nanowires, 

and describe the nanowire synthesis and device fabrication. In Section 6.3, we present 

conductance measurements of the one-dimensional Ge/Si nanowires. In Section 6.4, 

useful background information regarding superconductivity is described. The 

experimental results of superconducting proximity effect in Ge/Si nanowires are deferred 

to Chapter 7. 
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6.2 Ge/Si Core/Shell Nanowires 

6.2.1 Nanowire Synthesis 

 Typically, semiconductor nanowires are single crystal wires with diameters 

ranging from 10 nm to 100 nm and lengths of a few micrometers. There are several 

excellent growth techniques that are currently used for nanowire synthesis. The core-shell 

(radial heterostructure) nanowires studied in this thesis were synthesized using a 

chemical vapor deposition (CVD) based vapor-liquid-solid (VLS) technique. 

 The VLS growth technique was first proposed and demonstrated by Wagner and 

Ellis [105,106] in 1964 for the growth of silicon whiskers. This technique was further 

developed to grow InAs and GaAs wires with nanometer scale diameters [107-109].  The 

first step in the VLS process is the deposition of a metallic particle on the surface of the 

substrate that acts as the solid catalyst (S). A precursor vapor (V), the source material 

carrier gas, is then introduced into the chamber which is held above the eutectic 

temperature, and a liquid alloy droplet (L) is formed. As the precursor vapor is further 

incorporated into the alloy droplet, the droplet saturates, and a crystal nucleation process 

is initiated. This results in axial growth of the wire at the liquid-solid interface, with the 

metal catalyst being continually lifted up from the substrate during growth. A schematic 

of the VLS growth technique is shown in Figures 6.1 (a) and (b). The metallic particle 

used in the VLS growth technique determines the diameter of the wire. 

 As described above, axial growth occurs at the liquid-solid (catalyst-nanowire) 

interface and not on the nanowire surface. For radial growth, the chamber conditions are 

altered to induce growth by vapor-phase deposition on the nanowire surface [110],  
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Figure 6.1 Schematic of the nanowire growth technique. (a) Vapor-Liquid-Solid 
mechanism. (b) Axial growth mechanism. (c) Shell growth mechanism. (d) Cross-section 
of the resulting Ge/Si core/shell nanowire. 
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schematically shown in Figure 6.1 (c). It is in this way that we are able to first grow Ge 

nanowires, and then coat them with a Si layer to form radial heterostructure nanowires, 

with a cross section as shown in Figure 6.1 (d). 

 The nanowires studied in this thesis are Ge/Si core shell nanowires grown by Jie 

Xiang of the Lieber group at Harvard University. The growth begins with the deposition 

of gold nanoparticles on oxidized silicon wafers. The gold nanoparticles used were 10 nm 

in diameter. The wafers were then placed in a quartz tube furnace. The germanium 

nanowire growth was initiated by nucleation at 315°C for 1 minute using 10% GeH4 in 

H2 (30 standard cm3/min) and H2 (200 standard cm3/min) at 300 torr. Axial growth was 

performed at 280°C and 100 torr for 15 minutes. The growth rate for the Ge core was 

approximately 1 μm/min. The Si shell was deposited in the same chamber immediately 

following the Ge growth at 450°C and 5 torr for 1 minute using SiH4 

(5 standard cm3/min). The growth rate for the Si shell was approximately 1 nm/min. 

Transmission electron microscopy images of the clean, epitaxially grown Ge/Si core/shell 

nanowires are shown in Figure 6.2 (a). The nanowires studied in this thesis have an 

average core diameter of 14.6 nm, with an average shell thickness of 1.7 nm.  

 The Ge/Si core/shell nanowires are radial heterostructures, with a valence band 

offset at the Ge/Si interface of approximately 500 meV. Measurements performed by the 

Lieber group on similar devices show that the Fermi level in these nanowires is pinned 

below the Ge valence band, as shown in Figure 6.2 (b) [111]. Therefore, there is an 

accumulation of hole carriers that are confined to the Ge-core quantum well. It is in this 

respect that we are able to form a one-dimensional hole gas. It is important to emphasize  
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Figure 6.2 (a) Transmission electron micrographs of a Ge/Si core/shell nanowire. 
Contrast between the Ge and Si regions is due to the difference in atomic weights in Ge 
and Si. Dashed lines delineating the Si shell are included in the upper image.  
(b) Schematic of the band diagram of the Ge/Si core/shell nanowire. The Fermi energy, 
indicated by the dashed line, lies below the Ge valence band. 



that neither the Ge core nor the Si shell were doped during growth, and therefore, 

scattering from ionized dopants should be negligible. 

 

6.2.2 Three-Terminal Device Fabrication 

 After growth, the substrates were sonicated in ethanol to aid in the lift-off of the 

nanowires from the substrates. The nanowires were then deposited on degenerately doped 

Si substrates (n-type, resistivity < 0.005 Ω-cm) with a 50 nm thermal oxide layer. 

 To create a three-terminal nanowire device, aluminum source and drain contacts 

were deposited using electron-beam lithography and metallization techniques described 

in Section 3.2. The source and drain contacts are 30 nm thick aluminum layers. No 

annealing step is performed after metallization. The length of the nanowire between the 

contacts is typically 100 nm to 150 nm. To achieve stronger gate-nanowire coupling than 

the back gate allows, a top gate was incorporated on the device. Atomic layer deposition 

[112] was used to deposit hafnium oxide (HfO2) on the Ge/Si nanowires. Deposition was 

carried out at 110°C using 30 cycles to yield a thickness of 4 nm. Each cycle consists of a 

short exposure to a metal amide precursor, tetrakis(dimethylamido)hafnium (IV) and 

H2O, and nitrogen purges. The top gate was then defined by electron-beam lithography, 

followed by deposition of 5 nm of Cr and 50 nm of Au. The complete three-terminal 

device is shown in Figure 6.3. 
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Figure 6.3 (a) Schematic and (b) scanning electron micrograph of the top gated nanowire 
device. The nanowire is contacted by 30 nm thick aluminum electrodes. A high-k 
dielectric layer covers the nanowire, and a gold top gate is deposited on the device. 
Typical length of the nanowire, between the electrodes, is 150 nm. 
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6.3 Electron Transport in One-Dimensional Ge/Si Nanowires 

 Assuming that a particle is confined to a narrow wire of length Lx, solutions of the 

Schrödinger equation can be written as 

 ( , , ) ( , )xik x
nx y z Ae y zψ ξ=  (6.1) 

where ( , )n y zξ  satisfy a two-dimensional Schrödinger equation. These solutions describe 

1D subbands, with free motion in the x-direction and quantized eigenstates bound in two 

dimensions. The energy spectrum is given by 
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The 1D density of states (per unit length) in the nth subband is 
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Here, gs and gv are the spin degeneracy and valley degeneracy, respectively. A factor of 2 

was included to account for both states with positive kx and states with negative kx. At 

equilibrium, the number of states with positive kx equals the number of states with 

negative kx and there is therefore no net current. If a small voltage bias VSD is applied 

across the wire, causing a difference eVSD = μsource - μdrain between the electrochemical 

potentials of the source and drain contacts, a net current flows. The contribution to the 

current by a single occupied subband is 
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= ⎜ ⎟
⎝ ⎠

∫ =
E dE  (6.4) 

where the term in parentheses is the group velocity. The factor of 1/2 was included so 

that only states with positive kx contribute to the current. The contribution to the current 
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by a single occupied subband can be calculated by solving Equation (6.4), and noting that 

the dependence on En(k) simply cancels. This leads to 

 
2

( ) ( )
2 2

s v s v s v
n source drain SD SD

g g g g g g eI e e eV
h

μ μ
π π

= − = =
= =

V  (6.5) 

The contribution to the conductance by a single occupied subband is therefore  

 
2

n
n s

SD

I eG g g
V h

= = v  (6.6) 

Every time a new subband is populated in the one-dimensional nanostructure, the 

conductance increases by this value. This leads to conductance plateaus, as described in 

Section 2.3 in relation to a quantum point contact. 

 Typically, when measuring transport through a one-dimensional nanostructure, a 

capacitively coupled gate with voltage VG can be tuned to change the carrier density and 

consequently, the number of 1D subbands populated. However, a change in VG modifies 

both the spacing of the 1D subbands, due to changes in the confining potential, and also 

the electrostatic potential energy eV of the nanostructure. A schematic diagram helpful in 

describing transport in one-dimensional conductors is shown in Figure 6.4. We can 

incorporate the gate voltage by rewriting Equation (6.2) as 

 
2 2

*( ) ( ) .
2

x
n x n G

kE k E V eV
m

= + +
=  (6.7) 

The nonlinear conductance can be measured by applying a source-drain bias VSD across 

the nanostructure, and allowing different numbers of subbands in the forward and reverse 

directions to be populated [113]. A typical measurement used to study a one-dimensional 

nanostructure consists of the differential conductance G = dI/dVSD as a function of both  

VG and VSD. 
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Figure 6.4 Series of 1D subbands with band bottoms at En, n = 1, 2, 3. An applied 
source-drain bias sets the electrochemical potential of the contacts: eVSD = µsource - µdrain. 
When the number of occupied subbands is the same for both positive and negative kx the 
conductance is quantized. The gate voltage changes the location of the band bottoms and 
also the spacing of the subbands. 
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 Transport in a one-dimensional nanostructure can be diffusive, quasi-ballistic, or 

ballistic, depending on the various length scales involved. The important scales to 

consider are the length Lx of the nanostructure, the Fermi wavelength λF, the width W, 

and the elastic mean free path le. The Fermi wavelength λF, compared to the width of the 

nanostructure, determines the dimensionality of the system. For ballistic transport, 

,x eL W l� , and 1D quantum states extend across the wire. Scattering does not affect the 

transport; the carriers only feel the physical boundaries of the nanostructure. For quasi-

ballistic transport, , and a few impurities are present in the wire and mix the 

1D modes. For diffusive transport, 

eW l L� � x

xel W L<� , and scattering off impurities dominates. 

In the diffusive regime, le is the dominant length scale, and therefore, the one-

dimensionality of the wire is lost. 

 As derived above, transport through one-dimensional nanostructures results in 

conductance quantization, and is typically observed in GaAs/AlGaAs 2DEGs using 

quantum point contacts, as discussed in Section 2.3. However, deviations from 2e2/h are 

sometimes observed even in such clean systems [114]. Such deviations may arise from a 

sudden change in the electrostatic potential of the one-dimensional nanostructure that will 

result in inter-mode coupling or partial reflections of the electron waves. 

 We now turn to conductance measurements of the Ge/Si core shell nanowires. 

Figure 6.5 shows the conductance G as a function of the source-drain voltage VSD for 

different values of top gate voltage VG. Measurements were performed at 10 K. Dark 

regions corresponding to areas where curves are bunching are clearly observed and are  

spaced by approximately e2/h. Regions where the curves are bunching are plateaus in the 

conductance because bunching indicates that a change in the top gate voltage VG results  
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Figure 6.5 Differential conductance dI/dVSD at T = 10 K as a function of the source-drain 
voltage VSD. Each curve corresponds to a different value of gate voltage (VG = 0.8 V to 
-3.5 V in 50 mV steps, with no offset applied). Dark regions where curves are bunching 
are clearly observed, and are the location of the conductance plateaus. Plateaus at zero 
source-drain bias evolve into plateaus at large bias. 
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in very small changes in G. We find deviations from conductance quantization in units of 

2e2/h possibly due to the reasons described above. 

 In Figure 6.5, we see that the plateaus (bunching) at zero-bias (VSD = 0) evolve 

into plateaus (bunching) at large bias (VSD ~ ± 20 mV). The observed bunching of 

conductance curves evolving into half plateaus at large bias suggests of transport through 

one-dimensional subbands in the Ge/Si nanowire [111]. This is similar to nonlinear 

conductance measurements in quantum point contacts [115] where plateaus at zero-bias 

evolve into half plateaus at large bias when the electrochemical potentials of the source 

and drain contacts cross different subbands, resulting in a diamond pattern outlining the 

subband energy spacing. 

 

6.4 Superconducting Proximity Effect 

 The BCS theory provides a microscopic theory for the origin of superconductivity 

in metals. The underlying concept of the BCS theory is that in the presence of a weak 

attractive potential between electrons, the energy of the Fermi sea of electrons could be 

lowered if opposite-momentum, opposite-spin electrons form bound pairs [116,117]. Two 

electrons in a metal generally feel a repulsive force due to a direct Coulomb interaction. 

However, at temperatures below a critical temperature TC, an indirect phonon-mediated 

interaction may become dominant, and serves to attract two electrons at the Fermi 

surface. This leads to the formation of bound pairs of electrons, called Cooper pairs. A 

Cooper pair is a boson consisting of two electrons with equal and opposite momentum 

and spin. All the Cooper pairs in the conductor condense into a single state, resulting in 

an energy gap of width 2Δ centered on the Fermi energy EF, as shown in Figure 6.6 (a). 
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The energy gap Δ is dependent on the temperature and magnetic field. At zero 

temperature, the BCS theory predicts that [26] 

 1.76 B Ck TΔ =  (6.8) 

The density of states for the superconducting state is given by [26] 

 2 2

(0) , | |
( )

0, | |

N E E
N E E

E

⎧ > Δ⎪= − Δ⎨
⎪ < Δ⎩

 (6.9) 

were N(0) is the density of states at the Fermi surface and is a constant. There are no 

states available in a width 2Δ around EF [Figure 6.6 (a)]. This energy gap affects the 

transport properties of normal-superconductor (N-S) junctions. 

 The coherence length ξ0, one of the key characteristic length scales describing a 

superconductor, is calculated in the BCS theory to be (at T = 0) 

 0
Fvξ

π
=

Δ
=  (6.10) 

where vF is the Fermi velocity. In the phenomenological Ginzburg-Landau theory of 

superconductivity [26], the coherence length can be understood as the spatial extent over 

which the superconducting order parameter reduces to zero. 

 We are interested in transport in superconductor-normal-superconductor (S-N-S) 

junctions where the normal metal is made superconductive by a proximity effect. The 

process of Andreev reflections [118] at a N-S interface is crucial to the understanding of 

the proximity effect [119]. Figure 6.6 (b) shows the energy spectrum of a N-S junction. 

An electron in the normal metal with energy less than Δ cannot enter the superconductor 

because no states exist at the same energy in the superconductor. However, transport into 

the superconductor can occur if a 4 particle process takes place: an electron in the normal  
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Figure 6.6 (a) Plot of the density of states (horizontal axis) of the superconducting state. 
(b) Schematic diagram of a N-S interface showing the Andreev reflection process. An 
electron with energy EF + ε in N incident on the N-S interface is reflected as a hole in N. 
The incident electron effectively drags a second electron with energy EF - ε to form a 
Cooper pair in S. 



metal is reflected as a hole at the N-S interface, and a Cooper pair is generated in the 

superconductor. This process was first studied by Andreev in 1964 and is known as an 

Andreev reflection [118]. The process is shown in Figure 6.6 (b). The reflected hole has 

the same momentum as the incident electron, but its velocity is opposite to the 

momentum, and therefore the hole retraces the incident electron trajectory. The reflected 

hole is a result of a second electron being “dragged” into the superconductor by the 

incident electron to generate a Cooper pair. The Andreev reflection correlates the two 

electrons. 

 In an Andreev reflection process, charge and energy are conserved but momentum 

is, in general, not conserved. Conservation of charge is satisfied because the initial charge 

is just -e and the final charge is -2e of the Cooper pair plus e of the hole. For energy 

conservation, assuming the incident electron has energy EF + ε, the hole has energy 

EF - ε. Finally, momentum conservation is obtained when ε is zero only. Otherwise, the 

incident electron momentum ( )
2F

kk εΔ
+  and the reflected hole momentum ( )

2F
kk εΔ

−  

are different by ( ) F Fk k Eε εΔ = . 

 In a S-N-S system, Andreev reflections can occur at either the left or right 

superconductor-normal interface. Successive Andreev reflections at both the S-N and 

N-S interfaces lead to the formation of Andreev bound states in the junction. An electron 

incident on the (right) N-S interface will generate a Cooper pair and reflect a hole. This 

hole will travel to the (left) S-N interface and reflect an electron by breaking up a Cooper 

pair. The net result of such reflections is the transfer of Cooper pairs across the junction. 

In this way, due to the proximity effect, a supercurrent (Josephson effect) can flow 

through the junction [119]. 
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 Multiple Andreev reflections allow for “Andreev channels” to open up in the 

S-N-S junction and gives rise to a subharmonic energy gap structure in the differential 

conductance dI/dV as a function of the bias voltage V. These Andreev channels arise 

from a progressive increase of the incident electron energy as it reflects between the two 

interfaces. Each time the electron (or hole) travels across the junction, it picks up an 

energy eV until the energy exceeds the gap energy. The multiple Andreev reflections are 

seen as peaks in dI/dV at the location of 2eV n= Δ (for n = 1, 2, 3…). A general 

description of this effect was given by Blonder, Tinkham, and Klapwijk (BTK) [120]. 

The BTK theory uses the Bogoliubov-de Gennes equations to calculate the reflection and 

transmission probabilities for particles incident on the N-S interface. These probabilities 

are then used to calculate the net current. 

 The critical current IC in the S-N-S junction is defined as the maximum 

supercurrent that can flow through the junction 

 ~ F
C

evI
L

 (6.11) 

Here, L is the length of the normal metal. We can use the coherence length from 

Equation (6.10) for L, appropriate for zero temperature, to get 

 ~C
eI Δ
=

 (6.12) 

If M modes are available, the total critical current is just the sum of the contribution from 

each mode: 

 C
eI M Δ

=
=

 (6.13) 
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Combining this with the normal state quantized conductance formula (with M modes) 

( )22 1N NG M e h R= = , we get: 

 ~C NI R
e
Δ  (6.14) 

We find that ICRN is a constant, depending only on the material and temperature through 

the energy gap Δ. The relation  

 C NI R C
e
Δ

=  (6.15) 

is in fact true for weak links (Josephson junctions) in general [26]. The Ambegaokar-

Baratoff formula defines C to be π/2, whereas the calculations by Kulik and 

Omel’yanchuk calculate a value of C either 1.32 or 2 times greater than π/2, for dirty and 

clean metallic junctions [26]. For this thesis, it is only important to note that ICRN ~ Δ/e 

and is expected to be constant for a given material and temperature regardless of the 

junction geometry. 

 In conclusion, the proximity effect in S-N-S junctions is a result of correlations 

between electrons and holes (quasi-particles) in the normal conductor as a result of 

Andreev reflections. The generated supercurrent in the normal conductor indicates the 

phase coherent motion of the quasi-particles. In the next chapter, we describe our 

research on the proximity effect in nanowires. We believe that this is an exciting area of 

research, and could lead to possible phase coherent electronic devices using 

superconducting circuit elements. 
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VII 

SUPERCONDUCTING PROXIMITY EFFECT IN 

SEMICONDUCTOR NANOWIRES 

 

7.1 Overview 

 S-N-S junctions [121] are interesting systems that can display rich behavior, 

including macroscopic quantum phenomena as manifested in the Josephson effect. S-N-S 

junctions are also important from a technological perspective because of their roles in 

SQUIDs [122] and Josephson field-effect transistors [123,124]. In almost all of the 

previous investigations of S-N-S junctions, conventional metals have been used as the 

weak links (the N regions). Furthermore, the junction size was of fixed width, with the 

normal metal having a large carrier density that cannot be depleted. Recent progress in 

nanoscale fabrication techniques now makes it possible to use a semiconductor as the 

weak link and create hybrid semiconductor-superconductor junctions. With an additional 

local metal gate, the carrier density of the semiconductor can be modified, effectively 

creating a S-N-S junction of variable width. This will allow an investigation of variable 

carrier density S-N-S junctions in the ballistic regime where quantization of supercurrent 

is expected to be observed [125]. Experiments on mechanically controllable break 

junctions have been performed showing possible quantization steps of the supercurrent 

[126]. However, the large fluctuations in the observed data highlight the need for a clean 

system that only a ballistic semiconductor weak link can provide. 

The ability to create coherent hybrid semiconductor-superconductor 

nanostructures has opened up a new field of study combining mesoscopic physics and 
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superconductivity. Quantum confinement of carriers can be introduced in the 

semiconductor, for example, by using band structure engineering, allowing for a variety 

of new and exciting weak links consisting of low-dimensional systems where electron-

electron interactions can play an important role. 

 In this chapter, Ge/Si semiconductor nanowires are used as weak links in a 

S-nanowire-S geometry, and the junction properties are investigated. These unique 

junctions offer the opportunity to investigate the interplay between one-dimensional 

quantum confinement and superconductivity. A local top gate allows for the nanowire 

carrier density to be modified, tuning the Fermi level through a discrete 1D density of 

states. In this way, transport through the nanowire can be restricted to the first few 1D 

modes. 

 The Ge/Si nanowires are fabricated in a three-terminal device geometry, with 

aluminum source and drain electrodes and a gold top gate. The device was discussed in 

detail in Chapter 6, where we also presented evidence of transport through 1D subbands 

in the Ge/Si nanowires. In the next section, we describe the low-noise filtering techniques 

that are necessary for the proximity-induced superconductivity measurements. In 

Section 7.3, we present our results on supercurrents in Ge/Si nanowires. In Section 7.4, 

we discuss multiple Andreev reflections in the S-nanowire-S junctions. Finally, in 

Section 7.5, we discuss the connection between 1D modes and superconductivity. 
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7.2 Low-Noise Measurement Setup 

 In order to observe supercurrents (with critical current IC) in conventional S-N-S 

junctions, the Josephson energy 2J CE I e= =  must be greater than the thermal energy 

kBT: 

 2 2J C B C BE I e k T I ek T= →= � � =  (7.1) 

A more practical form of this constraint can be derived by noting that ICRN ~ Δ/e 

[Equation (6.14)] and Δ = 1.76kBTC [Equation (6.8)]. With these relations, we can rewrite 

Equation (7.1) as 
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Where RQ = h/e2 is the quantum resistance and TC is the critical temperature of the 

superconducting electrodes. Equation (7.2) clearly shows that observation of 

supercurrents requires that (i) the normal state resistance of the junction to be much less 

than the quantum resistance and that (ii) the temperature T must be much less than TC. 
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This translates to having junctions with high contact transparency operating at low 

temperature. 

 The temperature T appearing in the equations above is very sensitive to noise. As 

stated in the text by M. Tinkham [26]: IC must be sufficient to overcome an effective noise 

temperature which may approach room temperature rather than the temperature of the 

superconductor, unless the electrical leads are very well screened. Therefore, it is 

necessary to reduce the radiation noise fed down from the electronic circuitry to prevent 

electronic heating of the sample. 

We employed three stages of filtering on all the electrical leads. An illustration of 

the experimental setup is shown in Figure 7.1 (a). At room temperature, before the 

electrical leads enter the cryostat, π filters (Spectrum Control Inc., Part # 9001-100-1017) 

are placed on each electrical lead. The π filters are mounted inside a Pomona box 

(Pomona Electronics, Part # 3752) through a RF-tight copper divider, as shown in 

Figure 7.2 (a). The copper divider separates the ‘in’ section from the ‘out’ section to 

further shield the outgoing signal from radiation. Above 1 MHz, the measured attenuation 

of these π filters is 80 dB. A second stage of filtering is provided by 10 kΩ metal film 

resistors embedded in a copper chuck, as shown in Figure 7.2 (b). The copper chuck is 

thermally anchored to the mixing chamber. The 10 kΩ metal film resistors, along with 

the cable inductance and capacitance, serve as cold low-pass RLC filters with an 

estimated noise cut off frequency of 10 kHz. The final stage of filtering of the leads, 

effective for frequencies above 1 GHz, is provided by a copper powder filter that is 

integrated on the cold finger, shown in Figure 7.2 (c). The area between the inner and 

outer tubes of the cold finger is filled with a mixture of surface-oxidized copper powder  
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Figure 7.1 (a) Schematic diagram of a typical current bias nanowire measurement 
showing the three stages of filtering. Each electrical lead passes through a π filter placed 
on the top of the dilution insert. Metal film resistors and copper powder filters thermally 
anchored to the mixing chamber provide additional noise attenuation. The dilution 
refrigerator and measurement electronics are placed inside a shielded room. (b) Circuit 
diagram showing the four-probe voltage bias nanowire measurement setup. 



and epoxy (Stycast #1266, Emerson and Cumming Inc.), and the electrical leads were 

coiled inside this cavity and then connected to the sample. RF noise is attenuated in these 

filters due to the large effective surface area of the copper particles and the small skin 

depth [127]. 

 In addition to the filtering of the electrical leads, several layers of radiation 

shielding was provided. Once the sample is placed on the socket at the end of the cold 

finger, a copper cap screws over the sample. Therefore, the electrical leads exiting the 

copper powder filter connect directly to the sample while remaining shielded from 

electromagnetic interference. A 600 mK radiation shield is placed around the lower 

section of the 3He/4He insert. The can of the Inner Vacuum Chamber and the cryostat 

provide additional layers of shielding. Finally, the 3He/4He dilution refrigerator and the 

measurement electronics sit inside a sealed shielded room. The data acquisition computer 

is placed outside the shielded room, and communicates with the measurement electronics 

via optical fibers. 

 All measurements presented in this chapter were performed at the mixing 

chamber temperature of 60 mK. Four-probe measurements [Figure 7.2 (b)], as discussed 

in Section 3.4.1, were used to obtain voltage-bias measurements of dV/dI and dI/dV. The 

four probes were formed by wire bonding a pair of wires onto each aluminum electrode. 
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Figure 7.2 (a) Photograph of the π filter used in the measurements. A RF-tight copper 
divider separates the input section of the Pomona box from the output section. (b) Copper 
chuck with twenty four 10 kΩ metal film resistors embedded on the chuck. GE varnish is 
used to glue the resistors in place. (c) Cold finger for the dilution refrigerator with a 
copper powder filter. The copper powder filter exists between the inner and outer tubes. 
All electrical leads pass through the copper powder filter and then connect to the two chip 
sockets. A copper cap (not shown) screws over the bottom part of the cold finger. 
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7.3 Tunable Dissipationless Supercurrents 

 As discussed in Section 6.4, a normal metal contacted by superconducting 

electrodes exhibits superconductivity. Here, we present experimental results of Josephson 

dissipationless supercurrents through Ge/Si nanowires in contact with aluminum 

electrodes. The measured critical temperature of the aluminum electrodes, obtained from 

multiple Andreev reflections discussed in Section 7.4, is TC = 1.6 K. Figure 7.3 shows a 

typical voltage-current characteristic of the S-nanowire-S junction obtained in a four-

probe current bias configuration, with the top gate tuned to -3.5 V. A clear 

superconductive region of (effectively) zero resistance is observed. If the bias current is 

increased (black arrow) past the critical current IC, V(I) abruptly switches to dissipative 

conduction. When the current bias is swept down (red arrow), V(I) switches back to a 

dissipationless state at a return current IR that is smaller than IC. This hysteretic behavior 

is typical for an underdamped Josephson junction [26]. The hysteretic behavior can also 

be explained from heating: as the current bias is increased from zero past IC, the junction 

is heated. Therefore, when the current bias sweep is reversed, the wire is still hot and 

does not superconduct until it reaches a lower current bias. From Figure 7.3 we see that 

the critical current is approximately 113 nA. This is the largest critical current reported to 

date in semiconductor nanowires (see, for example, Ref. [128]). 

The top gate field-effect geometry allows us to modify the carrier density in the 

nanowire by simply changing the voltage applied to the gate. As discussed in Chapter 6, 

the nanowire is p-type (hole carriers). Therefore, a more negative gate voltage induces 

carriers in the system and allows for higher critical currents. This results in a junction 

where the critical current can be tuned. Figure 7.4 shows V(I) curves for several values of  
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Figure 7.3 V-I characteristics of a Ge/Si nanowire measured at T = 60 mK using the 
four-probe current bias measurement setup shown in Figure 7.1 (a). The top gate is tuned 
to -3.5 V. The critical current IC is observed as a sharp transition from the 
superconducting state to the resistive state. The black and red curves correspond to 
different current sweep directions, as indicated by the arrows. A hysteretic effect is 
observed, leading to a return current IR that is smaller than IC. 



gate voltages, and shows that the extent of the superconductive coupling can be tuned 

with the change of the carrier density inside the semiconductor nanowire. The top gate 

provides an additional experimental knob that is not available in conventional S-N-S 

junctions employing metallic weak links. We note that the resistance in the 

superconductive region, measured from the slope of the V(I) curve, varies between 2 Ω to 

5 Ω in our measurements. We believe this non-zero resistance arises from the wire 

bonding to the contact pads and also reflects the residual noise from the electromagnetic 

environment. 

The V(I) curves display several kinks immediately above IC, corresponding to 

multiple Andreev reflections, and is further discussed in the next section. Only at large 

bias, where , is the normal state V(I) curve recovered, as shown in Figure 7.5. 

At high bias, the normal resistance R

2eV Δ�

N can be measured directly from the slope of V(I). 

The contact transparency can be determined from the excess current of the V(I) 

curves. The excess current Iexc is the residual current at zero voltage when the high 

current bias V(I) curve is extrapolated to zero, as shown in Figure 7.5. From the values of 

the excess current, determined at several different gate voltages, and comparison to 

numerical calculations [129], we find that the contact transparency is approximately 80%. 

The high contact transparency, which was observed in all the other devices that were 

measured, demonstrates the excellent, reproducible contacts that can be formed using 

band structure engineered devices. 

 In Figure 7.6 we show IC versus magnetic field B. The magnetic field is oriented 

perpendicular to the sample. As the magnetic field is increased, we observe an anomalous 

enhancement of superconductivity giving rise to an increase in IC. Upon further  
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Figure 7.4 Tunable supercurrents in Ge/Si nanowires. The V-I curves are measured at 
different gate voltages, as indicated, with the voltage recorded while sweeping the current 
from zero toward 100 nA.  
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Figure 7.5 V-I curve (black line) measured with VG = -1 V. V(I) returns to the normal 
state only when eV > 2∆ (dashed line). The value of 2∆ is determined from multiple 
Andreev reflection data (see text and Figure 7.7) and equals 470 µeV. In the high bias 
regime, a straight line is fitted to V(I) (red line) and the normal state resistance RN and 
excess current Iexc can be determined from the slope and intercept, respectively. The non-
zero excess current represents the enhanced conductivity due to the proximity induced 
superconductivity at eV < 2∆ and allows for an approximate value of the contact 
transparency to be extracted (see text). 
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Figure 7.6 Critical current IC versus magnetic field, with the field oriented perpendicular 
to the sample. At small magnetic field, an anomalous enhancement of the critical current 
is observed. Upon further increase of the magnetic field, superconductivity in the Al 
electrodes is suppressed, resulting in a decrease of IC to zero. 
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increasing the magnetic field, superconductivity in the leads is suppressed and IC goes to 

zero. We are not aware of any explanations for observing such an effect in our 

S-nanowire-S junctions. However, similar data in ultra-narrow MoGe and Nb wires was 

recently reported and explained by the presence of local magnetic moments in the surface 

oxide of the nanowires [130,131]. Further measurements in a parallel magnetic field 

orientation would allow for a more thorough investigation of this effect. 

 

7.4 Multiple Andreev Reflections and Subharmonic Gap Structure 

 In Figures 7.3 and 7.4, we observed several kinks in V(I) immediately above IC, 

which tend to develop at the same voltage levels for different values of VG. These 

features can be attributed to multiple Andreev reflections. The multiple Andreev 

reflection (MAR) process allows carriers to gain the energy of the bias voltage each time 

it travels between the superconducting electrodes. Therefore, MAR gives rise to peaks in 

the differential conductance when the sum of the energy gain becomes multiples of the 

BCS gap energy Δ of the contact leads (see Section 6.4). 

 The subharmonic energy-gap structure resulting from multiple Andreev 

reflections can be observed in measurements of the differential conductance. Figure 7.7 

shows a plot of the differential conductance dI/dVSD as a function of the source-drain 

voltage bias VSD. The top gate voltage is set at VG = -900 mV. A four-probe lock-in 

measurement was used, with a 100 pV a.c. excitation voltage. Clear peaks are observed, 

symmetrically situated around VSD = 0. The peak at zero source-drain bias, with a height 

greater than 1×104 e2/h, corresponds to “infinite conductivity” when the nanowire 

becomes superconducting. This peak height is limited by several factors, including the  
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Figure 7.7 Four-probe measurement of dI/dVSD showing the clear subharmonic gap 
structure of the Ge/Si nanowire device. The top gate is tuned to VG = -900 mV. Arrows 
and dashed lines mark the expected MAR peak positions given by the BTK equation 
eVSD = 2∆/n. A fit of the peak positions to this equation gives ∆ = 235 µeV. 
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a.c. excitation voltage and the sweep rate. The peaks at finite source-drain voltage 

correspond to the subharmonic gap structure of the junction caused by MAR, with peak 

positions given by 2SDeV n= Δ  (n = 1,2,3…), as is expected from the BTK theory [114]. 

From a fit of the MAR peak positions to 2SDeV n= Δ  (n = 1,2,3…), we can determine 

the energy gap Δ = 235 μeV and find that the observed peaks correspond to n = 1, 2, 3, 4, 

5, 9, 12 and 25. Using the BCS relation 1.76 B Ck TΔ =   [Equation (6.8)], the measured 

energy gap Δ = 235 μeV corresponds to TC = 1.6 K for the Al leads in the BCS model. 

The arrows and dashed lines in Figure 7.6 mark the calculated peak positions and 

demonstrate the excellent fit of the observed data with theory. We note that the position 

of the first peak at high bias does not agree with this energy gap value. This can be 

explained by local heating of the junction due to the high voltage bias that is applied 

[132]. 

 We typically observe 8 or 9 MAR peaks, with order n as high as 25. Such a clear 

signature of multiple Andreev reflections reflects the high contact transparency and the 

effectiveness of the noise filters. Figure 7.8 (a) shows a 2D color map of dI/dVSD as a 

function of the source-drain voltage VSD and top gate voltage VG. For the n = 1 peak, the 

peak position fluctuates, and is the result of heating at such high voltage bias. For peaks 

of order n = 2 or higher, the peak positions remain constant with change in gate voltage, 

as expected. This is in contrast to the complicated shifts of MAR peaks around a resonant 

level in a quantum dot [133,134] and demonstrates the absence of such localized states in 

the Ge/Si nanowires. Figure 7.8 (b) shows two cuts of the 2D plot at VG = -700 mV and 

VG = -900 mV. We see that the n = 1 peak actually changes to a dip at different gate 

voltages. 
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Figure 7.8 (a) dI/dVSD versus VSD and VG color plot with black corresponding to high conductance and 
yellow corresponding to low conductance. Multiple Andreev reflection peaks in dI/dVSD are clearly 
observed. The peak positions remain constant over the entire range of VG. (b) Two cuts of the color plot in 
part (a) taken at VG = -700 mV and VG = -900 mV. We find that the n = 1 peak changes to a dip for 
different values of gate voltage. 
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7.5 Effects of One-Dimensional Quantum Confinement 

 We now turn to the one-dimensional nature of the nanowire. In Chapter 6, we 

presented data showing that transport through the Ge/Si nanowire occurs via 1D 

subbands due to the radial quantum confinement in the Ge core. Figure 7.9 (a) shows a 

plot of the critical current IC and the normal state conductance GN as a function of the 

gate voltage VG at T = 60 mK. The normal state conductance was obtained at zero bias 

while applying a 250 mT magnetic field, which suppresses superconductivity in the 

aluminum electrodes. We find that both GN and IC show step-wise increases as the carrier 

density is increased. GN shows plateau features at conductance values of N⋅e2/h, with 

N = 3, 4, 6, 8, and 10, indicative of transport through individual 1D subbands. This is 

similar to Figure 6.5, obtained at higher temperature, which shows clear plateaus 

corresponding to transport through 1D subbands. The critical current IC, after being 

“turned on” at VG = 870 mV, undergoes a step-wise increase with a step height of 

δIC ~ 20 nA, strongly suggestive of quantization of the superconducting critical current in 

the Ge/Si nanowire heterostructure. The nanowire remains superconducting once it has 

been “turned on”, in contrast to previous observations in carbon nanotube quantum dot 

S-N-S junctions where IC shows oscillatory on-off behavior [134].  

The correlation between the plateau features at quantized values in IC and GN can 

in fact be confirmed by plotting the ratio IC/GN, or ICRN, as shown in Figure 7.9 (b). The 

normal state resistance RN = 1/GN is obtained from the slope, at high bias, of V(I) curves 

similar to those shown in Figures 7.4 and 7.5 (see Section 7.3). The ICRN product is 

essentially a constant around 200 μV, and approximately equal to Δ/e, over a wide range 
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of gate voltages. It therefore suggests that the quantized steps in IC occur when individual 

subbands are populated in the nanowire. 

 The theory developed by Beenakker and van Houten [125], applicable to our 

nanowire junctions with length L that is much smaller than the coherence length ξ0, 

predicts a universal quantized value of critical current δIC = eΔ = . From the multiple 

Andreev reflections, we measured an energy gap Δ = 235 μeV. Therefore, δIC should 

equal 57 nA. Our measured δIC of 20 nA is of the same order of magnitude as the value 

predicted, but is smaller by a factor of approximately 3. Such a discrepancy may be 

accounted for by premature switching due to thermal activation in a capacitively and 

resistively shunted junction [26], which would lead to a measured IC that is smaller than 

the actual Josephson critical current. 

The work presented here is the first study of proximity effect coupled with 

discrete 1D modes in the L << ξ0 regime. Previous efforts by other groups investigated 

quantum point contact junctions with L >> ξ0 and report δIC that is only within two 

orders of magnitude from the universal value of eΔ =  [135,136]. 
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Figure 7.9 (a) Gate voltage dependence of the critical current IC (red) and normal state 
conductance GN (black), measured at T = 60 mK. The normal state conductance was 
measured at VSD = 0 with an applied magnetic field of 250 mT in order to suppress 
superconductivity in the Al electrodes. A series resistance of 200 Ω  is subtracted from the 
measured conductance. IC is extracted from individual V-I measurement at the transition 
from superconducting to resistive states. (b) Product of IC and RN versus gate voltage. RN 
is extracted from the slope of the individual V-I curves at voltages larger than 2∆/e (see 
Figure 7.5). 



 

CONCLUSIONS 

 The focus of this thesis has been on electron transport in low-dimensional 

semiconductor systems. Semiconductor nanostructures allowed for systems where the 

Fermi wavelength was comparable to the size of the nanostructure, leading to quantum 

confinement of electrons and holes. Charge and spin effects were observed in the context 

of Coulomb blockade, Kondo effect, and proximity-induced superconductivity. In order 

to study these effects, semiconductor quantum dots and nanowires were fabricated and 

measured at low-temperatures. Low-noise transport experiments were performed by 

properly filtering and grounding the electronic devices.  

 The main results of the research described in this thesis are: the design, 

fabrication and measurement of a single-electron rectifier composed of three coupled 

quantum dots operating in the Coulomb blockade regime; the investigation of a 

symmetric triple quantum dot system, supplemented by numerical calculations 

determining the exchange splitting of a two-electron triple dot; measurements of a one- 

and two-electron quantum dot in the Kondo regime; measurements of a unique core/shell 

heterostructure nanowire connected to superconducting electrodes. 

  The work in this thesis is part of the current effort in the condensed matter 

physics community to create systems, on small length scales, where quantum effects 

modify the transport properties. The result of such research will be the eventual 

development of technologically useful artificial systems where the quantum properties of 

the systems can be controlled and manipulated. Several major challenges, including 

isolating the system from (thermal) noise and achieving long coherence times, must be 
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overcome in order to fully utilize these quantum nanostructures. As mentioned in the 

introduction to this thesis, the interdisciplinary approach taken to the design of such 

artificial systems, bringing together expertise from physics, chemistry and material 

science, has had a tremendous positive effect on the progress in this field. Furthermore, 

new techniques, such as epitaxial heterostructure nanowire growth and atomically-precise 

instrumentation (i.e., atomic force microscopy), are constantly allowing for new 

developments in research. Although the challenges that lie ahead are daunting, there is 

reason to be confident in our ability to overcome them. 
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